小学数学基础知识整理(一到六年级) 小学一年级 九九乘法口诀表。
学会基础加减乘。 小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。 小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。 必背定义、定理公式 三角形的面积=底*高÷2。
公式 S= a*h÷2 正方形的面积=边长*边长 公式 S= a*a 长方形的面积=长*宽 公式 S= a*b 平行四边形的面积=底*高 公式 S= a*h 梯形的面积=(上底+下底)*高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长*宽*高 公式:V=abh 长方体(或正方体)的体积=底面积*高 公式:V=abh 正方体的体积=棱长*棱长*棱长 公式:V=aaa 圆的周长=直径*π 公式:L=πd=2πr 圆的面积=半径*半径*π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh 圆锥的体积=1/3底面*积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。 读懂理解会应用以下定义定理性质公式 一、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)*5=2*5+4*5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。 10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面 1、单价*数量=总价 2、单产量*数量=总产量 3、速度*时间=路程 4、工效*时间=工作总量 5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数*因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商*除数 有余数的除法: 被除数=商*除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5*6) 6、1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1吨=1000千克 1千克= 1000克= 1公斤= 1市斤 1公顷=10000平方米。
1亩=666.666平方米。 1升=1立方分米=1000毫升 1毫升=1立方厘米 7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:18 9、比例。
分数乘法,分数除法,圆,百分数,统计,,负数,比例,圆柱和圆锥。
上册:
1、第一单元《位置》
2、第二单元《分数乘法》
分数乘法
解决问题
倒数的认识
整理和复习
3、第三单元《分数除法》
分数除法
解决问题
比和比的应用
整理和复习
4、第四单元《圆》
圆的认识
圆的周长
圆的面积
整理和复习
确定起跑线
5、第五单元《百分数》
百分数的意义和写法
百分数和分数、小数的互化
用百分数解决问题
整理和复习
6、第六单元《统计》
扇形统计图
合理存款
7、第七单元《数学广角》
鸡兔同笼
8、第八单元《总复习》
下册:
一、负数
二、圆柱与圆锥
1.圆柱 圆柱的认识 圆柱的表面积 圆柱的体积
2.圆锥 第二单元整理和复习
三、比例
1.比例的意义和基本性质
2.正比例和反比例的意义
3.比例的应用
比例尺
图形的放大与缩小
用比例解决问题
第三单元整理和复习
综合应用:自行车里的数学
四、统计
五、数学广角
综合应用:节约用水
六、整理和复习
1.数与代数
数的认识
数的运算
式与方程
常见的量
比和比例
数学思考
2.空间与图形
图形的认识与测量
一:填空题1.小明站在东边南40度的方向上看小东,那么小东站在( 北偏西50度)方向上看小明。
2.用一张长7分米,宽6分米的长方形纸,剪下最大的圆,圆的周长是(18.84)分米,面积是(28.26)平凡分米。3.一个立方体棱长和为72厘米,这个立方体的体积是(216)立方厘米。
4.一个三角形的三个内角度数之比是2:5:2,这个三角形的最大角是(100)度,如果按角分是( 钝角 )三角形,按边分是(等腰)三角形。5.两个正方体的棱长之比是2:3,这个正方体的表面积之比是(4:9),体积之比是(8:27)6.一张长8厘米,宽5厘米的长方体纸片,最多能剪(8)个直径为2厘米的圆片。
7.用一个放大3倍的放大镜看一个30度的角,看到的角是(30)度。二:判断题8.有一组对边平行的四边形是梯形。
(错)9.圆锥的体积比它等底等高的圆柱的体积小3分之2.(对)10.等边三角形按中心点至少旋转60度才能与自身重合。( 错 )11.小明镜子里看到的时钟是1点,实际时间是11时(对)三:选择题12.两张完全相同的长方形纸片,一张以它的长作底面周长,另一张以它的宽作底面周长,分别卷长圆柱形(接口处不重叠),再装上底面,所得两个圆柱的(B)一定相等。
常用的数量关系式1、每份数*份数=总数 总数÷每份数=份数 总数÷份数=每份数 2、1倍数*倍数=几倍数 几倍数÷1倍数=倍数 几倍数÷倍数=1倍数 3、速度*时间=路程 路程÷速度=时间 路程÷时间=速度 4、单价*数量=总价 总价÷单价=数量 总价÷数量=单价 5、工作效率*工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷工作时间=工作效率 6、加数+加数=和 和-一个加数=另一个加数7、被减数-减数=差 被减数-差=减数 差+减数=被减数 8、因数*因数=积 积÷一个因数=另一个因数 9、被除数÷除数=商 被除数÷商=除数 商*除数=被除数 小学数学图形计算公式 1、正方形 (C:周长 S:面积 a:边长 ) 周长=边长*4 C=4a 面积=边长*边长 S=a*a 2、正方体 (V:体积 a:棱长 ) 表面积=棱长*棱长*6 S表=a*a*6 体积=棱长*棱长*棱长 V=a*a*a 3、长方形( C:周长 S:面积 a:边长 ) 周长=(长+宽)*2 C=2(a+b) 面积=长*宽 S=ab 4、长方体 (V:体积 s:面积 a:长 b: 宽 h:高)(1)表面积(长*宽+长*高+宽*高)*2 S=2(ab+ah+bh) (2)体积=长*宽*高 V=abh 5、三角形 (s:面积 a:底 h:高) 面积=底*高÷2 s=ah÷2 三角形高=面积 *2÷底 三角形底=面积 *2÷高 6、平行四边形 (s:面积 a:底 h:高) 面积=底*高 s=ah 7、梯形 (s:面积 a:上底 b:下底 h:高) 面积=(上底+下底)*高÷2 s=(a+b)* h÷28、圆形 (S:面积 C:周长 л d=直径 r=半径) (1)周长=直径*л=2*л*半径 C=лd=2лr (2)面积=半径*半径*л9、圆柱体 (v:体积 h:高 s:底面积 r:底面半径 c:底面周长) (1)侧面积=底面周长*高=ch(2лr或лd) (2)表面积=侧面积+底面积*2(3)体积=底面积*高 (4)体积=侧面积÷2*半径10、圆锥体 (v:体积 h:高 s:底面积 r:底面半径) 体积=底面积*高÷3 11、总数÷总份数=平均数 12、和差问题的公式:(和+差)÷2=大数 (和-差)÷2=小数 13、和倍问题: 和÷(倍数-1)=小数 小数*倍数=大数 (或者 和-小数=大数)14、差倍问题: 差÷(倍数-1)=小数 小数*倍数=大数 (或 小数+差=大数) 15、相遇问题 相遇路程=速度和*相遇时间; 相遇时间=相遇路程÷速度和; 速度和=相遇路程÷相遇时间 16、浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量*100%=浓度 溶液的重量*浓度=溶质的重量 溶质的重量÷浓度=溶液的重量17、利润与折扣问题 利润=售出价-成本; 利润率=利润÷成本*100%=(售出价÷成本-1)*100% 涨跌金额=本金*涨跌百分比; 利息=本金*利率*时间; 税后利息=本金*利率*时间*(1-20%) 常用单位换算 长度单位换算 1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米 面积单位换算:1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算:1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算: 1吨=1000 千克 1千克=1000克 1千克=1公斤 人民币单位换算: 1元=10角 1角=10分 1元=100分 时间单位换算:1世纪=100年 1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天, 闰年2月29天 平年全年365天, 闰年全年366天 1日=24小时 1时=60分 1分=60秒 1时=3600秒 基本概念 第一章 数和数的运算 一 概念 (一)整数 1 整数的意义: 自然数和0都是整数。
2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。
0也是自然数。 3计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。
4 数位: 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 5数的整除 整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。 一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。 个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。 能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
、、、要找资料可以去百度文库啊、、(1)自然数:我们在数物体的时候,用来表示物体个数的0,1,2,3,……,都叫做自然数。
1是自然数的记数单位。自然数既可以表示事物的多少(基数),也可以表示事物的次序(序数)。
如“每星期7天”中的“7”表示的是基数,“5月3日”中的“5”和“3”表示的是序数。一个物体也没有就用0表示。
0是最小的自然数。 (2)整数和自然数:自然数都是整数,但只是整数的一部分(整数还包括负整数)。
最小的一位数是1而不是0。 0的作用:①在数字中起占位作用,表示该位上没有单位;②表示起点;③表示界线。
如温度计、数轴上的0,表示正、负数的分界线。 (3)分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
表示其中一份的数就是分数单位。 分数与除法的关系:分数是一种数,除法是一种运算,它们是两个不同的概念,但它们也有密切的内在联系。
如: (4)小数:把整数“1”平均分成10份,100份,1000份……这样的一份或几份是十分之几,百分之几,千分之几……可以用小数表示。 小数的分类: (5)数位、位数和计数单位:各个计数单位所占的位置叫做数位。
一个自然数含有数位的多少叫做位数。整数和小数都是按照十进制计数法写出的数,其中个、十、百……以及十分之一、百分之一……都是计数单位。
(6)整数和小数数位顺序表: (7)百分数、成数和折扣: ①百分数:表示一个数是另一个数的百分之几的数叫做百分数。百分数也叫百分率或百分比。
②成数:农业上常用的名词。几成就是十分之几。
③折扣:商业上常用的名词。几折就是十分之几。
注意:百分数、成数和折扣只表示两个数的倍比关系,而分数除了表示倍比关系外,还可以是一个具体数量。 2、数的读法和写法 (1)整数的读法:从高位到低位,一级一级地读,每一级末尾的0都不读出来,其他数位连续有几个0都只读一个零。
(2)整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。 (3)小数的读法和写法:整数部分按整数来读(写),小数点读作点,小数部分依次读(写)出每一位上的数。
3、数的改写 (1)多位数的改写和省略:为了读写方便,我们常把一个较大的多位数,写成用“万”或“亿”作单位的数,先找到万位或亿位,再在万位或亿位上数的右下角点上小数点,并在后面写上“万”或“亿”,要用“=”;有时也可以根据需要省略这个数某一位后面的尾数,写成近似数。省略一般用“四舍五入法”,结果用“≈”。
(2)分数、小数与百分数的互化: (3)一个最简分数,如果分母中含有2和5以外的质因数,则这个分数不能化成有限小数。 4、数的大小比较 (1)整数的大小比较:先看位数,位数多的数大;位数相同,从最高位看起,相同数位上的数大的那个数就大。
(2)小数的大小比较:先比较两个数的整数部分,整数部分大的那个数大;整数部分相同,再看它们的小数部分,从高位看起,依数位比较,相同数位上的数大的那个数就大。 (3)分数大小比较:分母相同的分数,分子大的分数大;分子相同的分数,分母小的分数大。
分母不同的分数,先通分再比较。 第二节 数的整除和分数、小数的基本性质 知识要点 1、数的整除 (1)整除的意义:在小学阶段讲“数的整除”时所说的数一般指非0自然数。
数a除以数b,除得的商正好是整数而没有余数,我们就说,a能被b整除,或者说b能整除a。 (2)约数和倍数:如果a能被b整除,a叫做b的倍数,b叫做a的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。 一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。
(3)奇数和偶数:能被2整除的数叫做偶数,因为0也能被2整除,所以最小的偶数是0;不能被2整除的数叫做奇数,最小的奇数是1。 (4)能被2,3,5整除的数的特征: ①能被2整除的数:个位是0,2,4,6,8。
②能被3整除的数:各位上的数的和能被3整除。 ③能被5整除的数:个位上是0或5。
(5)质数和合数:一个数如果只有1和它本身两个约数,叫做质数;一个数,如果除了1和它本身,还有别的约数,就叫做合数。1既不是质数,也不是合数。
最小的质数是2,最小的合数是4。 (6)分解质因数:每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。
把一个合数用几个质因数相乘的形式表示出来,称为分解质因数。通常我们用短除法来分解质因数。
(7)公约数和最大公约数:几个数公有的约数叫做这几个数的公约数。其中最大的一个叫做这几个数的最大公约数。
(8)互质数:公约数只有1的两个数,叫做互质数。 (9)公倍数和最小公倍数:几个数公有的倍数,叫做这几个数的公倍数。
其中最小的一个叫做这几个数的最小公倍数。 (10)求最大公约数和最小公倍数的方法:一般采用短除法。
如果两个数中大数是小数的倍数,小数是大数的约数,则大数是它们的最小公倍数,小数是它们的最大公约数。如果两个数是互质数,则它们的最大公约数是1,最小公倍数是两数相乘所得的积 2、分数、小数的基本性质 (1)分数的基本性质:分数的分子和分母同时。
六年级数学总复习(一)教学设计 教学目标 1.使学生比较系统地、牢固地掌握有关整数、分数、小数、百分数的基础知识. 2.进一步弄清概念间的联系与区别. 教学重点 使学生比较系统地、牢固地掌握整数、小数、分数、百分数的基础知识. 教学难点 弄清概念间的联系和区别. 教学步骤 一、铺垫孕伏. 1.填空【演示课件“数的意义”】 0、1、79、1/2 、0.25、0.6、100、3/4、10/11、7/8、85%、30、90%、7、8、2.35…… 学生分类填数: 2.导入:上题同学们填得很正确,这就是我们在小学阶段学习的几种数:整数、分数、小数、百分数.这节课我们就把这几种数的意义和有关知识进行一下整理和复习.(板书课题:数的意义) 二、探究新知【继续演示课件“数的意义”】 (一)整数 1.小组讨论. 2.师生总结. 自然数:0、1、2、3、…… 自然数是整数. 教师说明:在小学只学大于0和等于0的整数,进入初中就要学习小于0的整数. 想一想:自然数有什么特征? 总结:最小的自然数是0,没有最大的自然数,说明自然数的个数是无限的. (二)分数. 1.引导学生思考: ①把单位“1”平均分成若干份,表示这样的一份或几份的数叫什么数?(分数) 表示其中一份的数是这个分数的什么?(分数单位) ②在整数范围内能计算2÷9吗?有了分数以后能计算吗?为什么? 2.填空练习. ①把单位“1”平均分成4份,表示这样的3份是( );把3平均分成4份,每一份是( ). ②5/7 的分数单位是( ),它至少再添上( )个这样的单位就成了整数. 3.教师说明:两个数相除,它们的商可以用分数表示. 即: 4.教师提问:同学们想一想,分数可以分为哪几类? 谁能说出真、假分数的意义及有关知识?(举例说明) ①分子比分母小的分数叫做真分数.真分数小于1. ②分子比分母大或者分子和分母相等的分数,叫做假分数.假分数大于1或者等于1. ③分子是分母的倍数的假分数可以化成整数. ④分子不是分母倍数的假分数可以化成带分数. ⑤反之,整数和带分数也可以化成假分数. 教师板书:假分数 教师说明:假分数、带分数、整数可以相互转化.带分数是由整数和真分数合成的数,它是分子不是分母倍数的假分数的另一种形式. (三)小数. 教师引导:从分数的意义联想一下,小数的意义又是什么呢?还学了哪些有关的知识呢?你能举例说明吗? 教师板书: 教师说明:整数和小数都是按十进制计数法写出的数,其中个、十、百……以及十分之一、百分之—……都是计数单位.各个计数单位所占的位置,叫做数位.数位是按一定的顺序排列的. (四)百分数. 教师提问:你们还记得百分数的意义吗? 教师板书:百分数(百分率或百分比):用%表示. 三、全课小结. 这节课我们整理和复习了数的意义及有关知识,并形成了知识网络,对数概念间的联系与区别有了更清楚的认识. 四、随堂练习【继续演示课件“数的意义”】 1.填空. (1)把根3米长的铁丝平均分成7段,每一段长是这根铁丝的( ),每段长米( ). (2)分数单位是1/9 的最大真分数是( ),它至少再添上()个这样的分数单位就成了假分数. (3)10个0.001是( ),10个0.01是(),10个0.1是( ),10 1是( ),10个10是( ). (4)最高位是百万位的整数是( )位数;最低位是百分位的小数有()位小数. (5)最小的四位数是( ),最大的三位数是( ),它们相差(). 2.判断下面的说法是不是正确,并说明理由. (1)自然数既可表示有“多少个”,又可以表示是“第几个”. (2)0不是自然数. (3)2/15不能化成有限小数. 五、布置作业. 1.用分数表示下面各题的商. 9÷11 16÷12 14÷21 39÷26 2.把下面表中的各数互化. 小数 分数 百分数 0.75 120%。
一、位置 在学习位置时用数对确定点的位置,起初确定一点位置是根据规定和约定。
由于在平面直角坐标系中,先画X轴,而X轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。
括号里面的数由左至右为列数和行数。 列数与行数必须是具体的数,而不能用字母如(X,5)表示,它表述一条横线,(5,Y)它表示一条竖线,都不能确定一个点。
这部分知识渗透数形结合的数学思想,可在方格纸上画一画。 二、分数乘法 分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。
2、分数乘分数是求一个数的几分之几是多少。 例:一时刷一面墙的1/4,1/5时刷一面墙的多少?求1/5的1/4是多少? 解决的方法一:用一张纸表示一面墙,折一折,这就是利用了数形结合的数学思想。
解决的方法二:工作效率成*工作时间=工作总量 分数乘法的算法: 1、分数与整数相乘,分子与整数相乘的积做分子,分母不变。 2、分数与分数相乘,用分子相乘的积做分子,分母相乘的积做分母。
分数的化简:分子、分母同时除以它们的最大公因数。 关于分数乘法的计算:可在乘的过程中约分,也可将积的分子分母约分,提倡在计算过程中约分,这样简便。
约分的书写格式:把两个可以约分的数先划去,分别在它们的上下方写出约分后的数。 分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。
倒数的意义:乘积为1的两个数互为倒数。 特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
求倒数的方法:1、求分数的倒数是交换分子分母的位置。 2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。
1的倒数是它本身。因为1*1=1 0没有倒数。
0乘任何数都得0=0*1,1/0(分母不能为0) 三、分数除法 分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。
分数除法的基本性质:强调0除外 比:两个数相除也叫两个数的比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。
注:10/2=5/1,表示比读5比1,19:2=5,是比值,比值是一个数,可以是整数,分数,也可以是小数。比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。
化简比: 1、用比的前项和后项同时除以它们的最大公约数。 2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。
3、两个小数的比,向右移动小数点的位置。也是先化成整数比。
在分数乘法的应用部分,提倡画线段图分析数量关系。在图上要标出已知量和所求问题。
关键是找到单位“1”,画线段图,主要是求一个数的几分之几是多少? 应用:求一个数比另一个数多几这类题:先求出(或少)几,再和单位“1”(即标准量作比较)。(大数-小数)/比较标准(即单位“1”) 画线段图: (1)标出已知和未知。
(2)分析数量关系。 (3)找等量关系。
(4)列方程。 注:两个量的关系画两条线段图,部分和整体的关系画一条线段图。
连比如:3:4:5读作:3比4比5 无论是折纸实验,还是画线段图,实际上都是图形语言揭示分数除法计算过程的几何意义。 在学习这些知识,分数乘除法,比的知识,运用了类比的数学方法(相似与变式)。
另外数据简单,降低探究、理解算理难度,便于口算,整个推理过程处于学生思维能力的最近发展区内。 比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
黄金分割点,最美的点。 A C B AC:AB=CB:AC 主持站在舞台上,他站在舞台上的黄金分割点处效果最好。
常用来做判断的: 一个数除以小于1的数,商大于被除数。 一个数除以1,商等于被除数。
一个数除以大于1的数,商小于被除数。 四、圆 圆的面积推导,用逐渐逼近的转化思想。
把一个圆等分(偶数份)成的份数越多,拼成的图像越接近长方形。 体现化圆为方,化曲为直的思想,应用转化思想。
化新为旧,化未知为已知,化复杂为简单,化抽象为具体。 面积相同时,长方形的周长最长,正方形居中,圆周长最短。
周长一定时,圆面积最大,正方形居中,长方形面积最小。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.883秒