初一数学(上)应知应会的知识点 代数初步知识 1. 代数式:用运算符号“+ - * ÷ …… ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式. 2.列代数式的几个注意事项: (1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写; (2)数与数相乘,仍应使用“*”乘,不用“· ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a*5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a* 应写成 a; (5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成 的形式; (6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a . 3.几个重要的代数式:(m、n表示整数) (1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ; (2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c; (3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数是: n-1、n、n+1 ; (4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 . 有理数 1.有理数: (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数; (2)有理数的分类: ① ② (3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性; (4)自然数Û 0和正整数;a>0 Û a是正数;a a≥0 Û a是正数或0 Û a是非负数;a≤ 0 Û a是负数或0 Û a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数: (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0 Û a+b=0 Û a、b互为相反数. 4.绝对值: (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离; (2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论; (3) ; ; (4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|, . 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;倒数是本身的数是±1;若ab=1Û a、b互为倒数;若ab=-1Û a、b互为负倒数. 7. 有理数加法法则: (1)同号两数相加,取相同的符号,并把绝对值相加; (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律: (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则: (1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零; (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac . 12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, . 13.有理数乘方的法则: (1)正数的任何次幂都是正数; (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定义: (1)求相同因式积的运算,叫做乘方; (2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂; (3)a2是重要的非负数,即a2≥0;若a2+|b|=0 Û a=0,b=0; (4)据规律 底数的小数点移动一位,平方数的小数点移动二位. 15.科学记数法:把一个大于10的数记成a*10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法. 16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位. 17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则. 19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 整式的加减 1.单项式:在代数式中,若只含有乘法(包括。
初一数学知识点 第一章 有理数 1正数、负数、有理数、相反数、科学记数法、近似数 2数轴:用数轴来表示数 3绝对值:正数的绝对值是它本身;负数的绝对值是它的相反数;零的绝对值是零 4正负数的大小比较:正数大于零,零大于负数,正数大于负数,绝对值大的负数值反而小 。
5有理数的加法法则: 同号两数相加,取相同的符号,并把绝对值相加; 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去减小的绝对值; 互为相反数的两数相加为零; 一个数加上零,仍得这个数。 6有理数的减法(把减法转换为加法) 减去一个数,等于加上这个数的相反数。
7有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同零相乘,都得零。 乘积是一的两个数互为倒数。
8有理数的除法(转换为乘法) 除以一个不为零的数,等于乘这个数的倒数。 9有理数的乘方 正数的任何次幂都是正数; 零的任何次幂都是负数; 负数的奇次幂是负数,负数的偶次幂是正数。
10混合运算顺序 (1) 先乘方,再乘除,最后加减; (2) 同级运算,从左到右进行; (3) 如果有括号,先做括号内的运算,按照小括号、中括号、大括号依次进行。 第二章 整式的加减 1 整式:单项式和多项式的统称; 2整式的加减 (1) 合并同类项 (2) 去括号 第三章 一元一次方程 1 一元一次方程的认识 2 等式的性质 等式两边加上或减去同一个数或者式子,结果仍然相等; 等式两边乘同一个数,或除以同一个不为零的数,结果仍相等。
3 解一元一次方程 一般步骤:去分母、去括号、移项、合并同类项、系数化为一 第四章 图形认识初步 1 几何图形:平面图和立体图 2 点、线、面、体 3 直线、射线、线段 两点确定一条直线; 两点之间,线段最短 4 角 角的度量度数 角的比较和运算 补角和余角:等角的补角和余角相等 初一下册 第五章 相交线和平行线 1 相交线:对顶角相等 2 垂线 经过一点有且只有一条直线和已知直线垂直; 连接直线外一点与直线上各点的所有线段中,垂线段最短(垂线段最短) 3 平行线 平行公理:经过直线外一点,有且只有一条直线与已知直线平行; 若两直线都与第三条直线平行,那么这两条直线也相互平行; 判定:同位角相等,两直线平行; 内错角相等,两直线平行; 同旁内角互补,两直线平行。 性质:两直线平行,同位角相等,内错角相等,同旁内角互补。
4 命题:判断一件事情的语句 5 平移 第六章 平面直角坐标系 1 有序数对:(a,b) 2 平面直角坐标系、原点、横轴、纵轴、象限 3简单应用:用坐标表示位置;用坐标表示平移。 第七章 三角形 1 与三角形有关的边: 三角形的边、高、中线、角平分线、稳定性 2 与三角形有关的角 内角:三角形的内角和是180度 外角:三角形的一个外角等于与它不相邻的两个内角的和; 三角形的一个外角大于与它不相邻的任何一个内角。
2 多边形 内角:多边形的内角和为(n-2)*180; 外角:多边形的外角和为360度。 第八章 二元一次方程组 1 二元一次方程与二元一次方程组的介绍 2 二元一次方程组的解法 代入法 消元法(加减法) 3 二元一次方程组的实际应用 第九章 不等式和不等式组 1 不等式及其解集:含有不等关系号的式子; 2 不等式的性质 性质1 不等式的两边加减同一个数或式子,不等号的方向不变; 性质2 不等式两边乘或除以同一个正数,不等号的方向不变; 性质3 不等式的两边乘或除以同一个负数,不等号的方向改变。
3 一元一次不等式在实际问题中的应用 4 一元一次不等式组及其解法:大大取大;小小取小;大于大的,小于小的取两边,大于小的,小于大的去中间。 第十章 实数 1 平方根:正数有两个平方根,它们互为相反数; 零的平方根是零; 负数没有平方根; 正数算术平方根是正数; 零的算术平方根是零。
2 立方根:正数的立方根是正数; 负数的立方根是负数; 零的立方根是零。 3 实数:有理数和无理数的统称。
无理数即是无限不循环小数。 我也不知道你要多简洁的,这算是比较全面的。
怎样学好数学之一怎样才能学好数学?老师给大家提出三方面的要求。
1、学数学和学其他课一样,上课要注意听讲,上课或下课要预习和复习,把每个知识点学透彻.但各门课程都有不同点:比如语文课今天我没上,明天上完课再补也可以,而数学是一环套一环的,比如:学小数加减混合运算,如果不先学小数加法和减法就不会,所以每个知识点一定要学透彻。2、同学们最怕考试做错题,做错了就要分析,总结。
我总结了一下丢分的四种情况:一种是会做,但粗心,做错了。第二种是一时想不出怎么做,事后就会做了。
第三种是时间不够,多给一点时间思考,也许就会做了。第四种是绝对做不出来,让你坐在那里一万年,你也做不出来。
解决方法有这样几点:一,今后要细心,千万要细心。二,今后要多做多练,所谓“熟读唐诗三百首,不会作诗也会吟”。
三,要会用时间!要快!但是,快,容易出错!怎么才能快?只有一条路:多练!第四种最可怕!这里面有两种情况。一种是你不会做,是因为你没有学好,做不出来;另一种情况是,你学好了,但缺少举一反三和综合能力,做不出来。
大部分同学问题出在第二种。老师出这样的题目是有道理的。
大家绝对不会做的题目,老师是不会出的,老师是在考大家举一反三,综合能力。你脑子要多绕几个弯子,多想几个为什么,就能做出来。
3、有这么一句话:兴趣是最好的老师。大家先把喜爱数学的兴趣培养出来,就能学好。
如何学好数学之二学好数学的方法其实跟读其他科目没太大差别,流程上可区分为六个步骤: 1. 预习 2. 专心听讲 3. 课后练习 4. 测验 5. 侦错、补强 6. 回想 以下就每一个步骤提出应注意事项,提供同学们参考。 1. 预 习 : 在课前把老师即将教授的单元内容浏览一次,并留意不了解的部份。
2. 专心听讲: (1)新的课程开始有很多新的名词定义或新的观念想法,老师的说明讲解绝对比同学们自己看书更清楚,务必用心听,切勿自作聪明而自误。 若老师讲到你早先预习时不了解的那部份,你就要特别注意。
有些同学听老师讲解的内容较简单,便以为他全会了,然后分心去做别的事,殊不知漏听了最精彩最重要的几句话,那几句话或许便是日后测验时答错的关键所在。 (2)上课时一面听讲就要一面把重点背下来。
定义、定理、公式等重点,上课时就要用心记忆,如此,当老师举例时才听得懂老师要阐述的要义。 待回家后只需花很短的时间,便能将今日所教的课程复习完毕。
事半而功倍。只可惜大多数同学上课像看电影一般,轻松地欣赏老师表演,下了课什麽都不记得,白白浪费一节课,真可惜。
3. 课后练习 : (1) 整理重点 有数学课的当天晚上,要把当天教的内容整理完毕,定义、定理、公式该背的一定要背熟,有些同学以为数学著重推理,不必死背,所以什麽都不背,这观念并不正确。一般所谓不死背,指的是不死背解法,但是基本的定义、定理、公式是我们解题的工具,没有记住这些,解题时将不能活用他们,好比医师若不将所有的医学知识、用药知识熟记心中,如何在第一时间救人。
很多同学数学考不好,就是没有把定义认识清楚,也没有把一些重要定理、公式”完整地〃背熟。 (2) 适当练习 重点整理完后,要适当练习。
先将老师上课时讲解过的例题做一次,然后做课本习题,行有余力,再做参考书或任课老师所发的补充试题。遇有难题一时解不出,可先略过,以免浪费时间,待闲暇时再作挑战,若仍解不出再与同学或老师讨论。
(3) 练习时一定要亲自动手演算。很多同学常会在考试时解题解到一半,就接不下去,分析其原因就是他做练习时是用看的,很多关键步骤忽略掉了。
4. 测验 : (1) 考前要把考试范围内的重点再整理一次,老师特别提示的重要题型一定要注意。 (2) 考试时,会做的题目一定要做对,常计算错误的同学,尽量把计算速度放慢, 移项以及加减乘除都要小心处理,少使用“心算” 。
(3) 考试时,我们的目的是要得高分,而不是作学术研究,所以遇到较难的题目不要 硬干,可先跳过,等到试卷中会做的题目都做完后,再利用剩下的时间挑战难题,如此便能将实力完全表现出来,达到最完美的演出。 (4) 考试时,容易紧张的同学,有两个可能的原因: a. 准备不够充分,以致缺乏信心。
这种人要加强试前的准备。 b. 对得分预期太高,万一遇到几个难题解不出来,心思不能集中,造成分数更低。
这种人必须调整心态,不要预期太高。 5. 侦错、补强 : 测验后,不论分数高低,要将做错的题目再订正一次,务必找出错误处,修正观念,如此才能将该单元学的更好。
6. 回想: 一个单元学完后,同学们要从头到尾把整个章节的重点内容回想一遍,特别注意标题,一般而言,每个小节的标题就是该小节的主题,也是最重要的。将主题重点回想一遍,才能完整了解我们在学些什麽东西。
1、一项工程由甲、乙、丙三个工程队完成,甲队单独完成要12天,乙队单独完成要12天,丙队要15天,甲乙先做4天后,甲因有事离去,剩余部分由乙丙合做完成,求乙一共做了多少天?2、一列客车长200米,一列货车长280米,在平行。
第一章 有理数 1。
1 正数与负数 在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。 与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。
1。2 有理数 正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。 通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。 在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0) 数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1。3 有理数的加减法 有理数加法法则: 1。
同号两数相加,取相同的符号,并把绝对值相加。 2。
绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。 互为相反数的两个数相加得0。
3。一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。 1。
4 有理数的乘除法 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。
乘积是1的两个数互为倒数。 有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。
两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。
mì 求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。 在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。
负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。
把一个大于10的数表示成a*10的n次方的形式,使用的就是科学计数法。 从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。
第二章 一元一次方程 2。1 从算式到方程 方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。 解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质: 1。等式两边加(或减)同一个数(或式子),结果仍相等。
2。等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2。2 从古老的代数书说起——一元一次方程的讨论(1) 把等式一边的某项变号后移到另一边,叫做移项。
第三章 图形认识初步 3。1 多姿多彩的图形 几何体也简称体(solid)。
包围着体的是面(surface)。 3。
2 直线、射线、线段 线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。 连接两点间的线段的长度,叫做这两点的距离。
3。3 角的度量 1度=60分 1分=60秒 1周角=360度 1平角=180度 3。
4 角的比较与运算 如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。 如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。
等角(同角)的补角相等。 等角(同角)的余角相等。
第四章 数据的收集与整理 收集、整理、描述和分析数据是数据处理的基本过程 。
抓住两个主要环节:一是紧紧抓住这一道题和一类题之间的共性,想想这一类题的一般思路和一般解法;二是紧紧抓住这一道题的特殊性,抓住这一道题与这一类题不同的地方。选择一个或几个条件作为解题的突破口,看由这些条件能得出什么过渡结论,得出的越多越好,然后筛选出有用的结论,进一步进行推理或演算。这就是老师常给同学们讲的:“聪明的同学是一类一类地学,不聪明的同学是一道一道地学”。要知道,题海无边,只有举一反三,触类旁通,才能跳出题海,领会数学学习的奥妙。
二、记住
三、讲“方法”联系“思想”,以“思想”指导“方法”,两者相得益彰。必要的基础知识是熟练解题的关键。
四、形成良好的思维品质是理解数学问题的基础数学,作为培养人的思维能力的一门学科,以其理性的思考而引人入胜。它不像游山观景,以其迷人的景色让人赏心悦目,流连忘返。数学学习,是通过思考与反思去研究事物的空间形式和数量关系,让事物的空间形式与数量关系呈现出来。只有形成良好的思维品质,以良好的思维品质这把利刃拔开事物的表象,才能“看”到事物的本质。
那么什么是良好的思维品质呢?我们以生活中“串门”这种现象为例来说明。许多人都有这样的生活体验,让别人带着去某人家串门,去了一次,两次,也可能是多次。有一天你不得不自己去某人家串门。当你走到某人家附近时,面对林立的整齐划一的建筑群,你茫然失措了,不知道某人家到底在哪儿。
在学习过程中,我们就经常出现这样的现象。在课堂上,老师讲得头头是道,同学们听得只点头,感觉明白至极。而一让同学们自己做题,又不知从何入手了。主要原因就在于同学们没有对所学的知识进行深入的思考,去理解所学知识的本质。就像串门,每次去某人家的时候,我们就应该对某人家周围的地理环境,特别是有什么特殊的标志进行记忆一样。要理解我们所学的知识有什么特点,有哪些内容是需要记住的,特别是这一节知识涉及到哪些数学思想和方法是需要及时掌握的。该记忆的内容要注意用心去记,只有记住必要的知识,思维才有依据。另外,要注意作好笔记。培根在《论求知》中说:“作笔记能使知识精确。如果一个人不愿做笔记,他的记忆力就必须强而可靠”。要注意把老师讲的重点,特别是老师总结的一些经验性、规律性的知识记下来,便于课后及时复习。课后复习,要思考有哪些问题已经搞会了,有哪些问题还没有搞会,并及时做好查漏补缺的工作。
以上从四个方面谈了如何学好初中数学的问题。要学好初中数学,除了要做到上边所谈外,勤奋刻苦的学习精神,认真仔细的学习态度,培养良好的学习习惯也是学好数学的关键。在课堂上,不仅是学习新知识,还要潜移默化地学习老师解决问题的思维方式,面对一个问题,最后是提前思考,找出自己的思维方式,然后把自己的思维方式与老师的思维方式作比较,取长补短,进而形成自己的思维方式。由“要我学”转变为“我要学”,培养学习的主动性,克服被动学习的局面。真正掌握数学学习的要领。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的数学基础知识,掌握学习数学的思想与方法,只是学好数学的前提,能独立解题、解对题才是学好数学的标志。 很不错哦,你可以试下
jvrgНa恭ぇe』Кu蔻cn(li02345678012011/8/9 17:58:45
第一章 整式的运算一. 整式※1. 单项式①由数与字母的积组成的代数式叫做单项式。
单独一个数或字母也是单项式。②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※2.多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二. 整式的加减¤1. 整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.¤2. 括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三. 同底数幂的乘法※同底数幂的乘法法则: (m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 (其中m、n、p均为正数);⑤公式还可以逆用: (m、n均为正整数)四.幂的乘方与积的乘方※1. 幂的乘方法则: (m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆.※2. .※3. 底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3※4.底数有时形式不同,但可以化成相同。
※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即 (n为正整数)。
※7.幂的乘方与积乘方法则均可逆向运用。五. 同底数幂的除法※1. 同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即 (a≠0,m、n都是正数,且m>n).※2. 在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的0次幂等于1,即 ,如 ,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即 ( a≠0,p是正整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的; 当a<0时,a-p的值可能是正也可能是负的,如 , ④运算要注意运算顺序. 六. 整式的乘法※1. 单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。
※2.单项式与多项式相乘单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。
※3.多项式与多项式相乘多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘 ,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得到 七.平方差公式¤1.平方差公式:两数和与这两数差的积,等于它们的平方差,※即 。¤其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
八.完全平方公式¤1. 完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的。
第一章 有理数 1.1 正数和负数 阅读与思考 用正负数表示加工允许误差 1.2 有理数 1.3 有理数的加减法 实验与探究 填幻方 阅读与思考 中国人最先使用负数 1.4 有理数的乘除法 观察与思考 翻牌游戏中的数学道理 1.5 有理数的乘方 数学活动 小结 复习题1 第二章 整式的加减 2.1 整式 阅读与思考 数字1与字母X的对话 2.2 整式的加减 信息技术应用 电子表格与数据计算 数学活动 小结 复习题2 第三章 一元一次方程 3.1 从算式到方程 阅读与思考 “方程”史话 3.2 解一元一次方程(一)——合并同类项与移项 实验与探究 无限循环小数化分数 3.3 解一元一次方程(二)——去括号与去分母 3.4 实际问题与一元一次方程 数学活动 小结 复习题3 第四章 图形认识初步 4.1 多姿多彩的图形 阅读与思考 几何学的起源 4.2 直线、射线、线段 阅读与思考 长度的测量 4.3 角 4.4 课题学习 设计制作长方体形状的包装纸盒。
代数 因式分解 分组分解 二次根式 化简、公式 的运用、分母有理化、最简二次根式 分式运算 异分母分式的混合运算(通分、符号、运算顺序) 一元二次方程 韦达定理的运用、求根公式、十字相乘法 分式方程 去分母法解分式方程 、换元法解分式方程(验根) 不等式 解不等式组 正比例函数 性质(k的正负与图象的关系)、解析式的确定 一次函数 性质(k、b的正负与图象的关系)、解析式的确定、与x、y轴的交点、两直线交点、面积问题 二次函数 基本性质(开口方向、对称轴、顶点坐标、最值)、解析式的确定(三种形式) a、b、c的正负与图象的关系、抛物线与x轴的两交点距离公式、抛物线与x轴的交点个数、y=ax2 y=ax2+c y=ax2+bx的图象特点、a+b+c、a-b+c、2a+b、2a-b等的符号判断、平移问题、面积问题、与韦达定理的综合、与相似三角形的综合、与圆的综合、与三角函数的综合等 反比例函数 定义的两种形式y=kx -1、面积不变性、中心对称性 函数的应用 根据函数图象解题、根据题意列函数关系式求最大(小)值 统计 众数、中位数、平均数及其变化规律、方差公式、方差的变化规律、标准差、频数、频率性质 概率 树状图、列表法求概率、计算方法求概率 几何 三角形 特殊三角形(等腰三角形、直角三角形)的性质 全等三角形 判定与性质 相似三角形 记忆相似基本型(如比例中项型等)、相似判定常用“角角”,但不要忽略“边角边” 四边形 平行四边形、矩形、菱形、正方形(重点)性质、等腰梯形性质、梯形的辅助线作法 多边形 内角和公式、利用外角和求正多边形的边数 解直角三角形 正弦、余弦、正切、余切的定义、特殊角的三角函数值等 圆 重要定理:垂径定理、等对等定理推论、圆周角定。
第一章 有理数1.1 正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。
与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。1.2 有理数正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。
整数和分数统称有理数(rational number)。通常用一条直线上的点表示数,这条直线叫数轴(number axis)。
数轴三要素:原点、正方向、单位长度。在直线上任取一个点表示数0,这个点叫做原点(origin)。
只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。
一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。
1.3 有理数的加减法有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得0。3.一个数同0相加,仍得这个数。
有理数减法法则:减去一个数,等于加这个数的相反数。1.4 有理数的乘除法有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
任何数同0相乘,都得0。乘积是1的两个数互为倒数。
有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。 mì求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。
在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。负数的奇次幂是负数,负数的偶次幂是正数。
正数的任何次幂都是正数,0的任何次幂都是0。把一个大于10的数表示成a*10的n次方的形式,使用的就是科学计数法。
从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。第二章 一元一次方程2.1 从算式到方程方程是含有未知数的等式。
方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解(solution)。
等式的性质:1.等式两边加(或减)同一个数(或式子),结果仍相等。2.等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
2.2 从古老的代数书说起——一元一次方程的讨论(1)把等式一边的某项变号后移到另一边,叫做移项。第三章 图形认识初步3.1 多姿多彩的图形几何体也简称体(solid)。
包围着体的是面(surface)。3.2 直线、射线、线段线段公理:两点的所有连线中,线段做短(两点之间,线段最短)。
连接两点间的线段的长度,叫做这两点的距离。3.3 角的度量1度=60分 1分=60秒 1周角=360度 1平角=180度3.4 角的比较与运算如果两个角的和等于90度(直角),就说这两个叫互为余角(compiementary angle),即其中每一个角是另一个角的余角。
如果两个角的和等于180度(平角),就说这两个叫互为补角(supplementary angle),即其中每一个角是另一个角的补角。等角(同角)的补角相等。
等角(同角)的余角相等。第四章 数据的收集与整理收集、整理、描述和分析数据是数据处理的基本过程。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.219秒