三年级数学(下册)知识要求归纳 第一单元 位置与方向1、(东与西)相对,(南与北)相对,(东南与西北)相对,(西南与东北)相对。
面南左为东,面北左为西,面东左为北,面西左为南。2、地图通常是按(上北、下南、左西、右东)来绘制的。
通常所说的八个方向:东、西、南、北、东南、西北、西南、东北。3、会看简单的路线图,会描述行走路线。
(做题时先标出东 南 西 北。) 一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走就到了哪里。
(在转弯处要注意方向的变化) 判断一个地方在什么方向,先要找到一个为中心点(观测点) 处画“米”字符号,再进行判断。 4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。
5、生活中的方位知识:①北斗星永远在北方。 ②影子与太阳的方向相对。
③早上太阳在东方,中午在南方,傍晚在西方。 ④风向与物体倾斜的方向相反。
(刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘……) 我国地处北半球,树叶茂盛的一面是南方,树叶稀疏的一面是北方。第二单元 除数是一位数的除法1、只要是平均分就用(除 法)计算。
2、除数是一位数的竖式除法法则:(1)从被除数的高位除起,每次用除数先试被除数的前一位数,如果它比除数小,再试除前两位数。(2)除到被除数的哪一位,就把商写在那一位上。
(3)每求出一位商,余下的数必须比除数小。顺口溜:除数是一位,先看前一位,一位不够看两位,除到哪位商那位,每次除后要比较,余数要比除数小。
3、被除数末尾有几个0,商的末尾不一定就有几个0。(如:30÷5 = 6)4、笔算除法:(1)余数一定要比除数小。
在有余数的除法中:最小的余数是1;最大的余数是除数减去1;最小的除数是余数加1;最大的被除数=商*除数+最大的余数; 最小的被除数=商*除数+1;(2)除法验算:→ 用乘法 没有余数的除法 有余数的除法 被除数÷除数=商 被除数÷除数=商……余数 商*除数=被除数 商*除数+余数=被除数 被除数÷商=除数 (被除数-余数)÷商=除数0除以任何不是0的数(0不能为除数)都等于0;0乘以任何数都得0;0加任何数都得任何数本身,任何数减0都得任何数本身。5、笔算除法顺序:确定商的位数,试商,检查,验算。
6、笔算除法时,哪一位上不够商1,就添0占位。(最高位不够除,就向后退一位再商。)
7、多位数除以一位数(判断商是几位数):用被除数最高位上的数跟除数进行比较,当被除数最高位上的数大于或等于除数时,被除数是几位数商就是几位数;当被除数最高位上的数小于除数时,商的位数就是被除数的位数减去1。第三单元 复式统计表 复式统计图的特点:有利于数据的比较,更容易分辨相同项目的区别。
第四单元 两位数乘两位数1、两位数乘两位数,积可能是(三)位数,也可能是(四)位数。2、口算乘法:整十、整百的数相乘,只需把前面数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。
3、估算:18*22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。)
4、有大约字样的一般要估算。5、凡是问够不够,能不能等的题目,都要三大步:①计算、②比较、③答题。
→ 别忘了比较这一步。6、笔算乘法:先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘。
7、相关公式: 因数*因数=积 积÷因数=另一个因数 运算顺序:先乘除,再算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先算括号内的运算。第五单元 面 积1、物体的表面或封闭图形的大小,就是它们的面积。
封闭图形一周的长度叫周长。长度单位和面积单位的单位不同,无法比较。
2、比较两个图形面积的大小,要用统一的面积单位来测量。3、①边长1厘米的正方形,面积是1平方厘米;②边长1分米的正方形,面积是1平方分米;③边长1米的正方形,面积是1平方米;4、长方形:长方形的面积=长*宽 长方形的周长=(长+宽)*2 求长:长=长方形面积÷宽 已知周长求长:长=长方形周长÷2-宽 求宽:宽=长方形面积÷长 已知周长求宽:宽=长方形周长÷2-长 正方形:正方形的面积=边长*边长 正方形的周长=边长*4 边长:边长=正方形面积÷边长 已知周长求边长:边长=正方形周长÷45、长度单位之间的进率:1厘米=10毫米 1分米=10厘米 1米=10分米 1千米=1000米6、周长相等的两个长方形,面积不一定相等。
面积相等的两个长方形,周长也不一定相等。7、在生活中找出接近于1平方厘米、1平方分米、1平方米的例子。
例如1平方厘米(指甲盖)、1平方分米(电脑A盘或电线插座)、1平方米(教室侧面的小展板)。8、区分长度单位和面积单位的不同:长度单位测量线段的长短,面积单位测量面的大小。
(二)长方形、正方形的面积计算1、归类:什么样的问题是求周长?(缝花边、围栅栏、围栏杆、池塘或花坛周围小路长度、围操场跑步的长度等等) 什么样的问题是求面积?或与面积有关?(课本等封面大小、刷墙、花坛周围小路面积、给餐桌配玻璃、给课桌配桌布、洒水车洒到的地面。
一、植树问题:这类应用题是以“植树”为内容。
凡是研究总路程、株距、段数、棵树四种数量关系的应用题,叫做植树问题。 解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。
解题规律:沿线段植树 棵树=总路程÷株距+1 棵树=段数+1 株距=总路程÷(棵树-1) 总路程=株距*(棵树-1) 沿周长植树 棵树=总路程÷株距 棵树=段数 株距=总路程÷棵树 总路程=株距*棵树 例 沿公路一旁埋电线杆 301 根,每相邻的两根的间距是 50 米 。后来全部改装,只埋了201 根。
求改装后每相邻两根的间距。 分析:本题是沿线段埋电线杆,要把电线杆的根数减掉一。
列式为 50 *( 301-1 )÷( 201-1 ) =75 (米) 二、分数和百分数的应用1 分数加减法应用题: 分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。2分数乘法应用题: 是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位“1”的量和分率,求与分率所对应的实际数量。 解题关键:准确判断单位“1”的量。
找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。 3 分数除法应用题: 求一个数是另一个数的几分之几(或百分之几)是多少。
特征:已知一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比较量,“另一个数”是标准量。
求分率或百分率,也就是求他们的倍数关系。 解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位一”,谁和单位一的量作比较,谁就作被除数。
甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。 甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。
关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数 。 已知一个数的几分之几(或百分之几 ) ,求这个数。
特征:已知一个实际数量和它相对应的分率,求单位“1”的量。 解题关键:准确判断单位“1”的量把单位“1”的量看成x根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的已知实际 数量。
三、度量 一、长度 (一) 什么是长度 长度是一维空间的度量。 (二) 长度常用单位 公里(km) 、米(m) 、分米(dm)、厘米(cm)、毫米(mm) 、微米(um) (三) 单位之间的换算 1毫米 =1000微米 , 1厘米 =10 毫米 , 1分米 =10 厘米 , 1米 =1000 毫米 , 1千米 =1000 米 二、面积 (一)什么是面积 面积,就是物体所占平面的大小。
对立体物体的表面的多少的测量一般称表面积。 (二)常用的面积单位 平方毫米 、平方厘米 、平方分米、平方米 、平方千米 (三)面积单位的换算 1平方厘米 =100 平方毫米 , 1平方分米=100平方厘米 ,1平方米 =100 平方分米 1公倾 =10000 平方米 , 1平方公里 =100 公顷 三、体积和容积 (一)什么是体积、容积 体积,就是物体所占空间的大小。
容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。 (二)常用单位 1、体积单位 立方米 、立方分米、立方厘米 2 、容积单位: 升、毫升 (三)单位换算 (1) 体积单位 1立方米=1000立方分米 1立方分米=1000立方厘米 (2) 容积单位 1升=1000毫升1升=1立方米 1毫升=1立方厘米 四、质量 (一)什么是质量 质量,就是表示表示物体有多重。
(二)常用单位 吨 :t 千克: kg 克: g (三)常用换算 一吨=1000千克 1千克=1000克 五、时间 (一)什么是时间 是指有起点和终点的一段时间 (二)常用单位 世纪、年 、月 、日 、时 、分、秒 (三)单位换算 1世纪=100年 1年=365天 (平年) 1年=366天 (闰年) 一、三、五、七、八、十、十二是大月, 大月有31 天 四、六、九、十一是小月,小月有30天 平年2月有28天, 闰年2月有29天 1天= 24小时 1小时=60分 1分=60秒 六、货币 (一)什么是货币 货币是充当一切商品的等价物的特殊商品。货币是价值的一般代表,可以购买任何别的商品。
(二)常用单位 元 、角 、分 (三)单位换算 1元=10角 1角=10分。
第1单元测量
1、在生活中,量比较短的物品,可以用(毫米、厘米、分米)做单位;量比较长的物体,常用(米)做单位;测量比较长的路程一般用(千米)做单位,千米也叫(公里)。
2、1厘米的长度里有(10)小格,每小格的长度(相等),都是(1)毫米。
3、1枚1分的硬币、尺子、磁卡、小纽扣、钥匙的厚度大约是1毫米。
4、在计算长度时,只有相同的长度单位才能相加减。
小技巧:换算长度单位时,把大单位换成小单位就在数字的末尾添加0(关系式中有几个0,就添几个0);把小单位换成大单位就在数字的末尾去掉0(关系式中有几个0,就去掉几个0)。
5、长度单位的关系式有:( 每两个相邻的长度单位之间的进率是10)
① 进率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,
10分米=1米,10厘米=1分米,10毫米=1厘米,
②进率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
③进率是1000:1千米=1000米, 1公里= =1000米,1000米=1千米,1000米 = 1公里
6、当我们表示物体有多重时,通常要用到(质量单位)。在生活中,称比较轻的物品的质量,可以用(克)做单位;称一般物品的质量,常用(千克)做单位;计量较重的或大宗物品的质量,通常用(吨)做单位。
小技巧:在“吨”与“千克”的换算中,把吨换算成千克,是在数字的末尾加上3个0;
把千克换算成吨,是在数字的末尾去掉3个0。
7、相邻两个质量单位进率是1000。
1吨=1000千克1千克=1000克1000千克= 1吨1000克=1千
一、教学内容与教学目标: 本册教材采用数与代数、空间与图形、统计与概率和实践与综合运用四个领域的内容同时混编的方式,各个领域包括以下内容: 数与代数:第一单元"元、角、分与小数"。
结合购物的具体情境初步理解小数的意义,能认、读、写简单的小数;感受比较小数大小的过程;会进行一位小数的 加减运算,能解决一些相关的简单问题;能运用小数表示日常生活中的一些事物,并进行交流。第三单元"乘法"。
会计算两位数乘两位数的乘法;能结合具体情境进行估算,并解释估算的过程;能灵活运用不同的方法解决生活中的简单问题,并能对结果的合理性进行判断。第五单元"认识分数"。
能结合具体情境与直观操作初步理解分数的意义,能认、读、写简单的分数;感受比较分数大小的过程;会计算同分母分数的加减运算, 能解决一些相关的简单问题。 空间与图形:第二单元"对称、平移和旋转"。
结合实例,感知平移、旋转、轴对称现象;能在方格纸上画出一个简单图形沿水平、竖直方向平移后的图形;通过观察、操作,认识轴对称图形,并能在方格纸上画出简单是轴对称图形。第四单元"面积"。
结合实例认识面积的含义,能用自选单位估计和测量图形的面积,体会统一面积单位的必要性,体会并认识面积单位,会进行简单的面积单位的换算;探索并掌握长方形、正方形的面积公式, 能估算给定的长方形、正方形的面积。 统计与概率:第六单元"统计与可能性"。
通过丰富的实例,了解平均数的意义,体会学习平均数的必要性,会求简单数据的平均数;能对一些简单事件发生的可能性做出描述,并和同伴交换想法。 实践活动: 到商店调查三种商品的价格,做好记录。
与同学比一比同一种商品的价格。找一找生活中的小数,并与同伴说一说。
用纸剪出一个你喜欢的图形,通过平移或旋转绘制一幅图案。设计旅游计划。
厨房铺地转的选择方案 制作七巧板。调查小组同学的身高,并计算小组的平均身高,并计算小组的平均身高。
在报刊上找出与平均数有关的信息,并与同伴说一说。 二、教学重点: 本册教材中的小数与分数、图形的变换与面积等概念,都是学生初次接触的重要基础知识,让学生在具体生动的情境中学习和理解它们是至关重要的。
三、教学难点: 培养学生应用数学的意识与独立解决问题的能力。要把数学学习与解决生活中的数学 问题结合起来,充分利用教材所提供的数学与生活紧密联系的线索,培养学生学会用数学的眼光观察现实生活,从中发现数学问题、提出数学问题、并解决数学问题,体会数学的广泛应用与实际价值,获得良好的情感体验。
四、学情分析: 本学期我所任教的三班,大部分学生对数学比较感兴趣,接受能力较强,学习态度较端正。尤其是男同学,学习基础也还比较好,但是有部分学生自觉性不够,不能及时完成作业,或者作业质量较差,对于学习数学有一定困难。
所以在新的学期里,在端正学生学习态度的同时,应加强培养他们的各种学习数学的能力,以提高成绩。 五、教学资源分析: 重视学生的生活经验,密切数学与现实的联系,引导学生在理解的基础上学习数学,促进学生对数学的认识。
教材通过"数与计算、量与计量、空间与图形、统计与概率、实践与综合应用"基本领域反映运用数学研究现实世界的基本过程,有机的渗透数感、符号感、空间观念、统计思想、推理意识等重要的数学思想和思维方式,并以此为主线选择和安排教学内容。 展现知识的产生和应用过程,形成"问题情境--建立模型--解释与应用"的基本叙述模式,引导学生逐步形成多样化的、科学合理的学习方式。
通过上述的过程,学生将逐步掌握基本的数学知识和方法,形成良好的数学思维习惯和应用意识,提高自己解决问题的能力,感受数学思考的乐趣,增进学好数学的信心,获得对数学较为全面的体验与理解。 以数学活动为线索安排教材内容,促进学生自主地参与、探索和交流。
按照《标准》的要求,教材突破了以往的以例题为中心的呈现方式,以学生的数学活动为线索,展开相关知识的学习。教材设立了"看一看、做一做、想一想、说一说、读一读、我的成长足迹、问题银行"等栏目,促进学生在观察、操作、思考、交流、反思等活动中,掌握基本的知识和技能,发展数学思考和解决问题的能力,初步形成良好的情感、态度与价值观。
六、提高教学质量的具体措施: (一)切实加强基础知识和基本技能的教学。 数学基础知识的理解。
教学时在使学生掌握数学概念、法则、数量关系的同时,应更重视数学方法的训练,逐步形成良好的思维方式和运用数学的意识。处理好基本训练与创造性思维发展及后继学习的关系。
小学生的创造性思维是在数学学习的"再创造"过程中逐步得到发展的,而 "再创造"的前提是通过必要的基本训练使学生形成扎实的基本功。 (二)重视引导学生自主探索,培养学生的创新意识和学习数学的兴趣。
本册教材设计了适量探索性和开放性的数学问题,给学生提供自主探索的机会和一个比较充分的思考空间。培养学生肯于钻研、善于思考、勤于动手的科学态度。
教师要关注学生的个体差异。
第一单元《位置与方向》 l 知识要点: (一)认识东、南、西、北、东北、东南、西北、西南八个方向。
1.知道辨认方向的方法:可以借助太阳等身边事物辨别方向,也可以借助指南针等工具辨别方向。 2.能根据一个方向确定其它七个方向,知道哪些方向是相对的。
南←→北,西←→东;西北←→东南,东北←→西南。 3.会辨别地图上的方向:上北下南、左西右东。
(书:练习一第3、4题;) 4.了解绘制简单示意图的方法:先确定好观察点,把选好的观察点画在平面图的中心位置,再确定好各物体相对于观察点的方向。在纸上按“上北下南、左西右东”绘制,用箭头“↑”标出北方。
(书:练习二第2题。) 5.并能看懂地图。
(p4例2:知道建筑或地点在整个地图的什么方向,地图上两个地点之间的位置关系:谁在谁的什么方向等)(大本p1双基训练)。 (二)看简单的路线图描述行走路线。
1.看简单路线图的方法:先要确定好自己所处的位置,以自己所处的位置为中心,再根据上北下南,左西右东的规律来确定目的地和周围事物所处的方向,最后根据目的地的方向和路程确定所要行走的路线。 2.描述行走路线的方法:以出发点为基准,再看哪一条路通向目的地,最后把行走路线描述出来(先向哪走,再向哪走)。
有时还要说明路程有多远。(书:p5做一做;p9做一做;)(大本:p3 左边第1、2题;右边第1、2、3题;) 3.综合性题目:给出路线图,说出去某地的走法,并根据信息求出所用时间、应该按什么速度行驶、或几时能到达、付多少钱买车票等等。
(大本:p5 第1、3题。) 第二单元《除数是一位数的除法》 l 知识要点: (一)口算除法 1.整千、整百、整十数除以一位数的口算方法(P14 例1) (1)用表内除法计算:用被除数0前面数除以一位数,算出结果后,看被除数的末尾有几个0,就在算出的结果后添几个0。
(2)先乘法,算除法:看一位数乘多少等于被除数,乘的数就是所求的商。 2.三位数除以一位数的估算方法(P16 例2): (1)除数不变,把三位数看成几百几十或整百的数,再用口算除法的基本方法计算。
(2)想口诀估算:想一位数乘几最接近或等于被除数的最高位或前两位,几百或几十就是所要估算的商。 (二)笔算除法 1.牢固掌握两位数除以一位数、三位数除以一位数的笔算方法、步骤与格式,尤其是商中间、末尾有0的笔算算式的写法。
(p29 例6;p31 例7) 2.会判断商是几位数。(p24 第5题) 3.知道除法的验算方法: (1)没有余数的除法:商*除数=被除数; (2)有余数的除法:商*除数+余数=被除数; 4.熟记关于0的一些规定: (1)0不能作除数。
(2)相同的两个数相除商是1。(既然能相除这个数就不是0) (3)0除以任何不是0的数都得0。
(三)特别提醒: 1.口算、估算、笔算,其中中间、末尾有0的要特别注意。 2.应用题看清要求,选择合适的方法解决问题。
口算题可以直接列式计算;估算题要注意书写格式:124÷3≈40;笔算题最好写出除法竖式。(书p35 第1、2、3题) 第三单元《统计》 l 知识要点: 1.会看横向条形统计图及起始格与其他格代表的单位量不一致的条形统计图。
能根据统计表中的数据完成统计图,完成的统计图上一定要标数据。 2.能根据统计图表进行分析,解决简单的实际问题(应用题)。
能根据统计图、表提出简单的问题,并进行解答。如书P45第2题。
3.能根据统计图、表中的内容进行简单的数据分析提出合理化的建议。如书P39。
4.理解平均数的含义,给出一组数据会求它们的平均数。如:3个女生身高:135厘米、140厘米、132厘米,求平均身高。
熟记平均数的格式,总数量除以总份数:( + + …… + )÷ 并脱式计算p42。会检查平均数的对错,平均数一定介于最大数与最小数之间。
5.会用平均数来比较两组数据的总体情况。如:书45页第4题。
会求哪种饼干第一季度的月平均销售量多,多多少。分析乙种饼干销售量越来越大的原因。
6.给出平均数和几个数据,求另一个数据。如:小明三科成绩的平均分是85分,其中外语83分,数学80分,求语文多少分。
7.与时间、速度等知识点结合的综合性题目。 请参考课本中的统计图的样子 第四单元《年月日》 l 知识要点: (一)年、月、日部分 1.熟记每个月的天数,知道大月一个月有31天,小月一个月有30天。
平年二月28天,闰年二月29天,二月既不是大月也不是小月。一年有12个月,7个大月,4个小月。
可借助歌谣记忆:一、三、五、七、八、十、腊(即十二月), 三十一天永不差, 四、六、九、冬三十整,(冬即十一月) 平年二月二十八,闰年二月二十九。 2.熟记全年天数:平年365天,闰年366天。
上半年多少天(平年181天,闰年182天),下半年多少天(184天)。 3.知道1、2、3月是第一季度,4、5、6月是第二季度,7、8、9月是第三季度,10、11、12月是第四季度。
会计算每个季度有多少天,连续几个月共有多少天。连续两个月共62天的是:7月和8月,12月和第二年的1月;一年中连续两个月共62天的是:7月和8月。
4.给出一个天数会计算有几个星期零几天。如:第三季度有(92)天,有(13 )个星期零( 1)天。
平年全年有(365)天,是(52 。
1、数与代数:数的认识、数的运算、式与方程、比和比例。
2、空间与图形:线与角、平面图形、立体图形、图形与变换、图形与位置。3、统计与可能性:量的计量、统计、可能性。
4、实践与综合应用:探索规律、一般复合应用问题、典型应用问题、分数和百分数应用问题、比和比例问题、解决问题的策略、综合应用问题。扩展资料:整数1、整数的意义:…像-4,-3,-2,-1,0,1,2,3,…这样的数叫整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3,4……叫做自然数。一个物体也没有,用0表示,0也是自然数。
3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。4、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 解比例的依据是比例的基本性质。
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x*y=k(k一定)或k/x=y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化法。16、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数:公因数只有1的两个数,叫做互质数。18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公因数)21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整,即能用2进行 约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。22、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金*利率*时间(时间一般以年或月为单位,应与利率的单位相对应)29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。30、自然数:用来表示物体个数的整数,叫做自然数。
0也是自然数。31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
32、一天的时间:一天有24小时,一小时60分,1分60秒 参考资料来源:百度百科-小学数学知识 参考资料来源:百度百科-小学数学。
分析、归纳试商的方法 (一)除数靠近整百数的除法此类题我们要把除数看着整百数来除。
例如,1902÷197= 1456÷202= 想:197≈200想:202≈200 200*9=1800 200*7=1400 确定试商9 确定试商7 做: 做: 因为:129 所以:试商正确 所以:试商正确(二) 除数靠近□50除法做此类题首先要加强学生对150、250、350……的倍数的口算训练,这是试商快而准的必要条件。其次在计算时要灵活的加以运用。
例如,765÷247=567÷152= 想:247≈250想:152≈150250*3=750150*3=450 确定试商3 确定试商3 做: 做: 因为:24 所以:试商正确 所以:试商正确(三) 除数在□50与整百之间由于除数是□16到□64的数有自身特点,如果我们仍然采取以上的方法,所的得的商有时会不够准确。我们可以取除数的最大值和最小值(整百),然后分别求出商,再求两商之和的平均值。
这个平均值便是我们要求的商或非常接近所求的商。 例如,781÷1361316÷261 想: 因为:781÷100商7 因为:1316÷200商6 781÷200商3 1316÷300商4(7+3)÷2=5 (6+4)÷2=5 所以:试商5 所以:试商5注:此种方法也应用与以上(二)的情况。
(四)在试商时如何减少试商的次数,是巧商的目的所在。 由于我们是采用求近似数方法,所以试商可能或大或小。
这时教师要向学生讲解商为何会发生变化,并对变化加以分析、归纳。 (1)除数四舍五入 变小了 商可能 变大了(2)除数四舍五入 变大了 商可能 变小大了以上分析目的让学生在做多位数除法时,能很快的把它进行归类,并找到与之相应方法。
从而达到巧商,提高正确率和速度。当然要使学生能够商得又准又快,达到巧商的效果。
除了掌握正确的方法之外,还要多练。俗话说“熟能生巧”,所以适当的练习是提高计算正确率和计算速度的必要条件。
数学趣题 1.有48个学生参加三项体育比赛,但参加的每项活动的人数不一样,而人数都有一个数字“6”,参加三项体育比赛的各有几人?2.龙龙和亮亮去公园玩,想买门票,但钱都不够,龙龙缺4元8角,亮亮缺1分,两人钱合起来仍不够,公园门票多少钱?3.三个人同时吃3个西红柿,用3分钟吃完,六个人同时吃6个西红柿要几分钟?4.有10张卡片,正面朝上,每次翻动6张卡片,经过若干次翻动,卡片能否都反面朝上?5.小张买了24瓶汽水,每4个空瓶可以换1瓶汽水,小张共能喝到几瓶汽水?年龄问题 1.四个人年龄之和是77岁,年龄最小的10岁,年龄最大与最小的人年龄之和比另外两个人的年龄之和大7岁,问年龄最大的人多少岁?2.爸爸在过50岁生日时,弟弟说:“等我长到哥哥现在的年龄时,我和哥哥的年龄之和等于那时爸爸的年龄”,那么哥哥今年多少岁?3.甲、乙、丙平均年龄42岁,如果甲的年龄增加7岁,乙的年龄增加一倍,丙的年龄缩小一半,则三人岁数相等,问甲多少岁?4.在一个家庭里,现在所有成员的年龄加在一起是73岁.家庭成员中有父亲、母亲、一个女儿和一个儿子.父亲比母亲大3岁,女儿比儿子大2岁.四年前家庭里所有的人的年龄总和是58岁.现在家里的每个成员各是多少岁?5.10年前吴昊的年龄是他儿子年龄的7倍.15年后,吴昊的年龄是他儿子的2倍.现在父子俩人的年龄各是多少岁?填横式 1.将0~6这7个数填在下面的○中,每个数字恰好出现一次和两位数的整数算式。○*○=○÷○=○2.由1~9的9个数字组成下列算式,5的位置已经知道,将填入其它数字 □*□=5□□□÷□*□=□3.将1~9填入下式使等式成立(有的数字已给出)。
□7*□=6□=□3-□□4.将1~9这九个数字分别填入下面算式的空格内,其中有一个数字已经知道,每个空格内只许填一个数字,使算式成立: □□□÷□□=□-□=□-75.1~9这九个数字分别填入下面算式的空格中,每个空格只许填一个数字,使算式成立:鸡兔同笼问题 1.小丽的储蓄罐中有100枚硬币。她把其中的贰分币全换成等值的伍分币,硬币总数变成73枚;然后她又把壹分币换成等值的伍分币,硬币总数变为33枚。
那么她的储蓄罐中共有 元。2.三种昆虫共18只,共有20对翅膀116条腿。
其中每只蜘蛛无翅8条腿,每只蜻蜓是2对翅膀6条腿,蝉是一对翅膀6条腿。问这三种昆虫各多少只?3.一张数学试卷,只有25道选择题。
做对一题得4分,做错一题倒扣1分;如不做,不得分也不扣分。若小明得了78分,那么他做对 题,做错 题,不做 题。
4.某杂志每期定价2元5角,全年共出12期。某班一些学生订半年,其余学生订全年,共需1320元;如果订半年的改订全年,订全年的改订半年,那么共需订费1245元。
问这个班共有多少名学生?5.已知甲、乙、丙3位同学共解出100道数学题,且他们3人每人都解出其中的60道题。若将其中只有1人解出的题叫做“难题”,3人都解出的题叫做“容易题”,则“难题”比“容易题”多多少道?3年级练习 1.计算:9998+998+99+9+62.计算 174+177+183+182+176+180+179+1893.某校有70名男同学及若干女同学参加数学竞赛,平均分为63分,参赛男同学平均分为60分,女同学平均分为70分,那么该校有多少女同学参赛?4.7个数的平均数是28,把这7个数排成一列,则前四个数的平均数为26,后四个数的平均数为33,则第四个数是多少?5.1,2,6,24,120,(),。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.294秒