1、圆的有关概念:(1)、确定一个圆的要素是圆心和半径。
(2)连结圆上任意两点的线段叫做弦。经过圆心的弦叫做直径。
圆上任意两点间的部分叫做圆弧,简称弧。小于半圆周的圆弧叫做劣弧。
大于半圆周的圆弧叫做优弧。在同圆或等圆中,能够互相重合的弧叫做等弧。
顶点在圆上,并且两边和圆相交的角叫圆周角。经过三角形三个顶点可以画一个圆,并且只能画一个,经过三角形三个顶点的圆叫做三角形的外接圆,三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。
与三角形各边都相切的圆叫做三角形的内切圆,三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。直角三角形内切圆半径 满足: 。
2、圆的有关性质(1)定理在同圆或等圆中,如果圆心角相等,那么它所对的弧相等,所对的弦相等,所对的弦的弦心距相等。推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对的其余各组量都分别相等。
(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。推论1(ⅰ)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(ⅱ)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(ⅲ)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧。
推论2圆的两条平行弦所夹的弧相等。(3)圆周角定理:一条弧所对的圆周角等于该弧鸡护惯咎甙侥轨鞋憨猫所对的圆心角的一半。
推论1在同圆或等圆中,同弧或等弧所对的圆周角相等,相等的圆周角所对的弧也相等。推论2半圆或直径所对的圆周角都相等,都等于90 。
90 的圆周角所对的弦是圆的直径。推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
(4)切线的判定与性质:判定定理:经过半径的外端且垂直与这条半径的直线是圆的切线。性质定理:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。
(5)定理:不在同一条直线上的三个点确定一个圆。(6)圆的切线上某一点与切点之间的线段的长叫做这点到圆的切线长;切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分这两条切线的夹角。
(7)圆内接四边形对角互补,一个外角等于内对角;圆外切四边形对边和相等;(8)弦切角定理:弦切角等于它所它所夹弧对的圆周角。(9)和圆有关的比例线段:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
从圆外一点引圆的两条割线,这一点到每条割线与圆交点的两条线段长的积相等。(10)两圆相切,连心线过切点;两圆相交,连心线垂直平分公共弦。
、圆的相关概念1、圆的定义在一个个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示以点O为圆心的圆记作“⊙O”,读作“圆O”二、弦、弧等与圆有关的定义(1)弦连接圆上任意两点的线段叫做弦。(如图中的AB)(2)直径经过圆心的弦叫做直径。
(如途中的CD)直径等于半径的2倍。(3)半圆圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
(4)弧、优弧、劣弧圆上任意两点间的部分叫做圆弧,简称弧。弧用符号“⌒”表示,以A,B为端点的弧记作“ ”,读作“圆弧AB”或“弧AB”。
大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)三、垂径定理及其推论垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。
(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。
推论2:圆的两条平行弦所夹的弧相等。垂径定理及其推论可概括为:过圆心垂直于弦直径 平分弦 知二推三平分弦所对的优弧平分弦所对的劣弧四、圆的对称性1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。五、弧、弦、弦心距、圆心角之间的关系定理1、圆心角顶点在圆心的角叫做圆心角。
2、弦心距从圆心到弦的距离叫做弦心距。3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。
推论:在同圆或等圆中,如果两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。六、圆周角定理及其推论1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。
2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。
推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
七、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:dd=r 点P在⊙O上;d>r 点P在⊙O外。八、过三点的圆1、过三点的圆不在同一直线上的三个点确定一个圆。
2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。九、反证法先假设命题中的结论不成立,然后由此经过推理,引出矛盾,判定所做的假设不正确,从而得到原命题成立,这种证明方法叫做反证法。
十、直线与圆的位置关系直线和圆有三种位置关系,具体如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交 d直线l与⊙O相切 d=r;直线l与⊙O相离 d>r;十一、切线的判定和性质1、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线。
2、切线的性质定理圆的切线垂直于经过切点的半径。十二、切线长定理1、切线长在经过圆外一点的圆的切线上,这点和切点之间的线段的长叫做这点到圆的切线长。
2、切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。十三、三角形的内切圆1、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。
2、三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。十四、圆和圆的位置关系1、圆和圆的位置关系如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。如果两个圆有两个公共点,那么就说这两个圆相交。
2、圆心距两圆圆心的距离叫做两圆的圆心距。3、圆和圆位置关系的性质与判定设两圆的半径分别为R和r,圆心距为d,那么两圆外离 d>R+r两圆外切 d=R+r两圆相交 R-r两圆内切 d=R-r(R>r)两圆内含 dr)4、两圆相切、相交的重要性质如果两圆相切,那么切点一定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
十五、正多边形和圆1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。
十。
圆知识总点 圆 yuán[编辑本段]【汉字中的“圆”】 【解释】 ①圆周所围成的平面:~桌∣~柱∣~筒; ②圆周的简称; ③像球的形状:滚~∣滴溜~; ④圆满;周全:这话说的不~∣这人做事很~,各方面都能照顾到; ⑤使圆满;使周全:~场∣~谎∣自~其说; ⑥我国的本位货币(即人民币)单位,一圆等于十角或一百分,也作元; ⑦圆形的货币:银~∣铜~; ⑧姓氏。
【组词】 〖圆场〗为打开僵局而从中解说或提出折衷办法:这事最好由你出面说几句话圆圆场。 〖圆成〗成全:完成好事。
〖圆雕〗雕塑的一种,用石头、金属、木头等雕出立体形象。 〖圆房〗旧指童养媳和未婚夫开始过夫妇生活。
〖圆坟〗旧俗在死人埋葬三天后去坟上培土。 〖圆规〗两脚规的一种,一脚是尖针,另一脚可以装上铅笔芯或鸭嘴笔头,是画圆和弧的用具。
〖圆滑〗形容人只顾各方面敷衍讨好,不负责任。 〖圆谎〗弥补谎话中的漏洞:他想圆谎,可越说漏洞越多。
〖圆浑〗①(声音)婉转而圆润自然:语调圆浑∣这段唱腔流畅而圆浑;②(诗文)意味浓厚,没有雕琢的痕迹。 〖圆寂〗佛教用语,称僧尼死亡。
〖圆满〗没有欠缺、漏洞,使人满意:圆满的答案∣两国会谈圆满结束。 〖圆梦〗解说梦的吉凶(迷信)。
〖圆全〗圆满;周全:想的圆全∣事情办的圆全。 〖圆润〗①饱满而润泽:圆润的歌喉;②(书、画技法)圆熟流利:他的书法圆润有力。
〖圆实〗圆而结实:西瓜长的挺圆实∣莲子饱满圆实。 〖圆熟〗①熟练;纯熟:笔体圆熟∣演技日臻圆熟。
②精明练达;灵活变通:处事极圆熟。 〖圆通〗(为人、做事)灵活变通,不固执己见。
〖圆舞曲〗一种每节三拍的民间舞曲,起源于奥地利,后来流行很广。 〖圆珠笔〗用油墨书写的一种笔,笔芯里装有油墨,笔尖是个小钢珠,油墨由钢珠四周漏下。
〖圆桌〗桌面是圆形的桌子。 〖圆子〗①糯米粉等做成的一种食品,大多有馅。
②〈方〉丸子。[编辑本段]【圆的基本知识】 〖几何中圆的定义〗 几何说:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
定点称为圆心,定长称为半径。 轨迹说:平面上一动点以一定点为中心,一定长为距离运动一周的轨迹称为圆周,简称圆。
集合说:到定点的距离等于定长的点的集合叫做圆。 〖圆的相关量〗 圆周率:圆周长度与圆的直径长度的比叫做圆周率,值是3.。
通常用π表示,计算中常取3.14为它的近似值(但奥数常取3或3.1416)。 圆弧和弦:圆上任意两点间的部分叫做圆弧,简称弧。
大于半圆的弧称为优弧,小于半圆的弧称为劣弧。连接圆上任意两点的线段叫做弦。
经过圆心的弦叫做直径。 圆心角和圆周角:顶点在圆心上的角叫做圆心角。
顶点在圆周上,且它的两边分别与圆有另一个交点的角叫做圆周角。 内心和外心:过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。
和三角形三边都相切的圆叫做这个三角形的内切圆,其圆心称为内心。 扇形:在圆上,由两条半径和一段弧围成的图形叫做扇形。
圆锥侧面展开图是一个扇形。这个扇形的半径称为圆锥的母线。
〖圆和圆的相关量字母表示方法〗 圆—⊙ 半径—r 弧—⌒ 直径—d 扇形弧长/圆锥母线—l 周长—C 面积—S 〖圆和其他图形的位置关系〗 圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO 直线与圆有3种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点。以直线AB与圆O为例(设OP⊥AB于P,则PO是AB到圆心的距离):AB与⊙O相离,PO>r;AB与⊙O相切,PO=r;AB与⊙O相交,PO 两圆之间有5种位置关系:无公共点的,一圆在另一圆之外叫外离,在之内叫内含;有唯一公共点的,一圆在另一圆之外叫外切,在之内叫内切;有两个公共点的叫相交。
两圆圆心之间的距离叫做圆心距。两圆的半径分别为R和r,且R≥r,圆心距为P:外离P>R+r;外切P=R+r;相交R-r[编辑本段]【圆的平面几何性质和定理】 一有关圆的基本性质与定理 ⑴圆的确定:不在同一直线上的三个点确定一个圆。
圆的对称性质:圆是轴对称图形,其对称轴是任意一条通过圆心的直线。圆也是中心对称图形,其对称中心是圆心。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的2条弧。
⑵有关圆周角和圆心角的性质和定理 在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。 一条弧所对的圆周角等于它所对的圆心角的一半。
直径所对的圆周角是直角。90度的圆周角所对的弦是直径。
⑶有关外接圆和内切圆的性质和定理 ①一个三角形有唯一确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离。
4、弓形面积1) S弓形=S扇形-SΔOAB
2) S弓形=S扇形+SΔOAB
二、圆锥的侧面积和全面积1 把矩形ABCD绕直线AB旋转一周得到的图形叫做圆柱.旋转轴直线AB叫做它的轴.
2 在轴AB上的矩形的边AB的长度叫做它的高.平行于轴的边DC旋转而成的曲面叫做它的侧面,无论旋转到什么位置,这条边都叫做圆柱的母线.
3 垂直于轴的边AD,BC旋转而成的圆面叫做它的底面
4、圆锥是由一个底面和一个侧面围成的,我们把圆锥
底面圆周上任意一点与圆锥顶点的连线叫做圆锥
的母线.连结顶点与底面圆心的线段叫做圆锥的高.
沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.
圆锥的侧面积就是弧长为圆锥底面的周长、半径为圆锥的一条母线的长的扇形面积,而圆锥的全面积就是它的侧面积与它的底面积的和.
5.设底面半径为r,母线长为l,则
S侧= l·2πr=πrl
S全=πrl+πr
数量关系:外离:d>R+r?四条公切线
外切:d=R+r?三条公切线
相交:R-r内切:d=R-r?一条公切线
内含:d6、两圆相交的性质定理:相交两圆的连心线垂直平分两圆的公共弦.
7、公切线的性质
(1)如果两圆有两条外公切线,那么这两条外公切线长相等;如果两圆有两条内公切线,那么这两条内公切线长相等.
(2)如果两圆有两条外(内)公切线,并且相交,那么交点一定在两圆的连心线上,并且连心线平分这两条公切线的夹角.
8、相交弦定理及其推论定理:圆内的两条相交弦,被交点分成的两条线段长的
积相等(PA·PB=PC·PD).
推论:如果弦与直径垂直相交,那么弦的一半是它分直
径所成的两条线段的比例中项(PC2=PD2=PA·PB).
9、切割线定理及推论定理:从圆外一点引圆的切线和割线,切线长
是这点到割线与圆交点的两条线段长的比例
中项(PA2=PB·PC或PA2=PD·PE).
推论:从圆外一点引圆的两条割线,这一点到两条割
线与圆的交点的两条线段长的积相等
(PB·PC=PD·PE).
圆的有关性质 一,〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质 〖大纲要求〗 1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系; 2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。
一个 圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一; 3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半 径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系; 4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的 圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径; 5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关 问题; 6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦” ③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。 〖考查重点与常见题型〗 1. 判断基本概念、基本定理等的正误,在中考题中常以选择题、填空题的形式考查学 生对基本概念和基本定理的正确理解,如:下列语句中,正确的有( ) (A)相等的圆心角所对的弧相等 (B)平分弦的直径垂直于弦 (C)长度相等的两条弧是等弧 (D)弦过圆心的每一条直线都是圆的对称轴 2. 论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。
此种结论的证明重 点考查了全等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识,常以解答题形式出现。 二,〖知识点〗 相交弦定理、切割线定理及其推论 〖大纲要求〗 1. 正误相交弦定理、切割线定理及其推论; 2. 了解圆幂定理的内在联系; 3. 熟练地应用定理解决有关问题; 4. 注意(1)相交弦定理、切割线定理及其推论统称为圆幂定理,圆幂定理是圆和相似 三角形结合的产物。
这几个定理可统一记忆成一个定理:过圆内或圆外一点作圆的两条割线,则这两条割线被圆截出的两弦被定点分(内分或外分)成两线段长的积相等(至于切线可看作是两条交点重合的割线)。使用时注意每条线段的两个端点一个是公共点,另一个是与圆的交点; (2)见圆中有两条相交想到相交弦定理;见到切线与一条割线相交则想到切割线定理;若有两条切线相交则想到切线长定理,并熟悉此时图形中存在着一个以交点和圆心连线为对称轴的对称图形。
〖考查重点与常见题型〗 证明等积式、等比式及混合等式等。此种结论的证明重点考查了相似三角形,切割线定 理及其推论,相交弦定理及圆的一些知识。
常见题型以中档解答题为主,也有一些出现在选择题或填空题中。
圆的特征:圆是由一条曲线构成的封闭图形,圆上任意一点到圆心的距离相等。
圆心和半径的作用:圆心决定圆的位置,半径决定圆的大小 圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴 同一圆中直径是半径的2倍 圆的周长指围成圆的曲线的长。
直径大的圆周长就大圆的周长除以直径的商是一个固定的数,我们把它叫做圆周率,用π表示,计算时通常取3.14 ,直径小的圆周长就小。 圆的周长:C=2πr或C=πd 求半径:r=C/2π 求直径:d=C/π 圆的面积意义:圆形物体,图形所占平面大小或圆形物体表面大小是圆的面积 面积计算公式:πr² 圆环面积计算方法:S=πR的平方-πr的平方或S=π(R的平方-r的平方)(R是大圆半径,r是小圆半径)。
4、弓形积2) S弓形=S扇形+SΔOAB 二、圆锥的侧面积和全面积1 把矩形ABCD绕直线AB旋转一周得到的图形叫做圆柱.旋转轴直线AB叫做它的轴. 2 在轴AB上的矩形的边AB的长度叫做它的高.平行于轴的边DC旋转而成的曲面叫做它的侧面,无论旋转到什么位置,这条边都叫做圆柱的母线. 3 垂直于轴的边AD,BC旋转而成的圆面叫做它的底面 4、圆锥是由一个底面和一个侧面围成的,我们把圆锥 底面圆周上任意一点与圆锥顶点的连线叫做圆锥 的母线.连结顶点与底面圆心的线段叫做圆锥的高. 沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长. 圆锥的侧面积就是弧长为圆锥底面的周长、半径为圆锥的一条母线的长的扇形面积,而圆锥的全面积就是它的侧面积与它的底面积的和. 5.设底面半径为r,母线长为l,则 S侧= l·2πr=πrl S全=πrl+πr 数量关系:外离:d>R+r。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.690秒