第十三章 无线电通信和电子元件 知识提要 一、无线电通信 1电磁波:电磁场在周围空间由近及远的传播就形成电磁波。水波、声波等都需要传播波的媒质,而电磁波可以在真空中传播。电磁波在空间传播,能量也一同传播。 电磁波在真空中的传播速度等于光在真空中的速度。电磁波的传播速度v、频率f和波长λ的 关系为:v=λf。不同频率的电磁波在真空中的传播速度都相同。 电磁波在无线电通信中称作无线电波。无线电波按波长可分为长波、中波、中短波、短波、微波等不同波段。 2无线电广播和电视:无线电广播和电视是利用电磁波来传递声音信号和图像信号的。其传播分发射和接收两个过程。其传播途径双分直射波、地波、天波三种方式。
(一)教学目的 1.常识性了解电磁波,知道电磁波的频率、波长的概念。
2.记住电磁波的传播速度。(二)教具 水,水槽,水木棍,麻绳,电池,半导体收音机,钢锉,导线。
(三)教学过程 1.复习 我们生活在一个充满声音的世界里,人们通过声音(如语言、音乐等)交流思想、表达感情。如家长的教诲、教师的授课可以增长我们的知识;优美动听的音乐可以陶冶人的情操、给人以美的享受。
声音是传递信息的一种重要方式,帮助我们了解世界。 通过我们在初中二年级学习过的声现象的有关知识,可以知道:一切正在发声的物体都在振动;我们听到的声音通常是靠空气传的;声波在空气中的传速度大约是340米/秒。
在前面我们还学习过电话,电话的话筒能把声音振动转化为强弱变化的电流,电流流经听筒,听筒又能把它转化为振动,使人听到声音。 2.引入新课 飞机上的飞行员与地面指挥员的对话不用电线;我们每天听收音机或看电视,也没有电线直接通向电台或电视台。
可见,这些都不是用电线来传播电信号的,我们称作“无线电通信”。那么,无线电通信是怎样传输信号的呢?今天我们就来学习这方面的简单知识。
3.进行新课 板书: (1)演示实验 ①手持小木棍,让木棍下端接触水槽水面,使同学们看到,水面上有一圈圈凸凹相间的状态从木棍接触水面处向外传播,形成了水波。 ②音叉(或其他发声体)振动时,在空气中会有疏密相间的状态向外传播,形成声波。
声波看不见,摸不到,但声波传到我们的耳朵,会引起鼓膜振动,使我们产生听觉。 总结以上实验(和其他事例)得出结论: 板书: (2)电磁波 板书:<当导体中有迅速变化的电流时,会向周围空间发射电磁波。
> 电磁波看不到,摸不着,我们可以通过实验来间接观察它的存在。 演示课本上图13—2的实验,实验后让学生阅读课本上“实验”后的两个自然段,再提出以下问题让学生回答。
①为什么会发生这种现象? ②举出日常生活中发生的类似的现象。 教师归纳小结,讲解电磁波的初步知识,并说明间接观察是物理学常用的研究方法(如借助小磁针可以间接地研究磁场)。
(3)电磁波的频率和波长 讲解课本图13—3水波在1秒内传播的波形图,结合小木棍振动时产生水波的演示实验说明: ①波峰与波谷的概念; ②在1秒内出现的波峰数(或波谷数)叫水波的频率;频率的单位叫做赫兹,简称赫。常用的频率单位是千赫和兆赫。
板书: ③波长与波速的概念; ④分析得出:波速与波长和频率的关系。 板书: 类似于水波,电磁波也有自己的频率和波长,也同样可以用波形图来描述,讲解课本图13—4频率不同的电磁波的波形图。
需要说明以下二点: ①电磁波的频率等于产生电磁波的振荡电流的频率。 ②电磁波频率、波长与波速的关系。
板书: 电磁波在空间是向各个方向传播的,德国物理学家赫兹用实验证实,电磁波的传播速度等于光速。 板书:<电磁波在真空中的传播速度与光速相同,是3*108米/秒。
在空气中和在真空中近似。> 注意:不同频率(或不同波长)的电磁波的传播速度都相同,所以频率较大的电磁波,波长较短。
例:我国第一颗人造地球卫星采用20.009兆赫和19.995兆赫的频率发送无线电信号,这两种频率的电磁波的波长各是多少?(光速为2.9979*108米/秒) (答案:波长分别为14.983米和14.993米) 由于电磁波的频率和波长各不相同,所以在我们周围空间里存在着形形色色的电磁波。按照课本上的图表,介绍无线电通信所用的电磁波(也叫无线电波)的几个波段。
定义 从科学的角度来说,电磁波是能量的一种,凡是高于绝对零度的物体,都会释出电磁波。
正像人们一直生活在空气中而眼睛却看不见空气一样,除光波外,人们也看不见无处不在的电磁波。电磁波就是这样一位人类素未谋面的“朋友”。
产生 电磁波是电磁场的一种运动形态。电与磁可说是一体两面,变化的电场会产生磁场(即电流会产生磁场),变化的磁场则会产生电场。
变化的电场和变化的磁场构成了一个不可分离的统一的场,这就是电磁场,而变化的电磁场在空间的传播形成了电磁波,电磁的变动就如同微风轻拂水面产生水波一般,因此被称为电磁波,也常称为电波。性质 电磁波频率低时,主要借由有形的导电体才能传递。
原因是在低频的电振荡中,磁电之间的相互变化比较缓慢,其能量几乎全部返回原电路而没有能量辐射出去;电磁波频率高时即可以在自由空间内传递,也可以束缚在有形的导电体内传递。在自由空间内传递的原因是在高频率的电振荡中,磁电互变甚快,能量不可能全部返回原振荡电路,于是电能、磁能随着电场与磁场的周期变化以电磁波的形式向空间传播出去,不需要介质也能向外传递能量,这就是一种辐射。
举例来说,太阳与地球之间的距离非常遥远,但在户外时,我们仍然能感受到和煦阳光的光与热,这就好比是“电磁辐射借由辐射现象传递能量”的原理一样。 电磁波为横波。
电磁波的磁场、电场及其行进方向三者互相垂直。振幅沿传播方向的垂直方向作周期性交变,其强度与距离的平方成反比,波本身带动能量,任何位置之能量功率与振幅的平方成正比。
其速度等于光速c(每秒3*10八次方米)。在空间传播的电磁波,距离最近的电场(磁场)强度方向相同,其量值最大两点之间的距离,就是电磁波的波长λ,电磁每秒钟变动的次数便是频率f。
三者之间的关系可通过公式c=λf。 电磁波的传播不需要介质,同频率的电磁波,在不同介质中的速度不同。
不同频率的电磁波,在同一种介质中传播时,频率越大折射率越大,速度越小。且电磁波只有在同种均匀介质中才能沿直线传播,若同一种介质是不均匀的,电磁波在其中的折射率是不一样的,在这样的介质中是沿曲线传播的。
通过不同介质时,会发生折射、反射、绕射、散射及吸收等等。电磁波的传播有沿地面传播的地面波,还有从空中传播的空中波以及天波。
波长越长其衰减也越少,电磁波的波长越长也越容易绕过障碍物继续传播。 机械波与电磁波都能发生折射、反射、衍射、干涉,因为所有的波都具有波粒两象性.折射、反射属于粒子性; 衍射、干涉为波动性。
能量 电磁波的能量大小由坡印廷矢量决定,即S=E*H,其中s为坡印庭矢量,E为电场强度,H为磁场强度。E、H、S彼此直构成右手螺旋关系;即由S代表单位时间流过与之垂直的单位面积的电磁能,单位是W/m²。
电磁波具有能量,电磁波是一种物质。 电磁波的计算 c=λf c:光速(这是一个常量,约等于3*10^8m/s) 单位:m/s f:频率(单位:Hz,1MHz=1000kHz=1*10^6Hz) λ:波长(单位:m)电磁波的发现 1864年,英国科学家麦克斯韦在总结前人研究电磁现象的基础上,建立了完整的电磁波理论。
他断定电磁波的存在,推导出电磁波与光具有同样的传播速度。 1887年德国物理学家赫兹用实验证实了电磁波的存在。
之后,1898年, 马可尼又进行了许多实验,不仅证明光是一种电磁波,而且发现了更多形式的电磁波,它们的本质完全相同,只是波长和频率有很大的差别 电磁波谱 按照波长或频率的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们是工频电磁波、无线电波、红外线、可见光、紫外线、X射线及γ射线。
以无线电的波长最长,宇宙射线的波长最短。 无线电波 3000米~0.3毫米。
(微波 0.1~100厘米) 红外线 0.3毫米~0.75微米。(其中:近红外为0.76~3微米,中红外为3~6微米,远红外为6~15微米,超远红外为15~300微米) 可见光 0.7微米~0.4微米。
紫外线 0.4微米~10毫微米 X射线 10毫微米~0.1毫微米 γ射线 0.1毫微米~0.001毫微米 高能射线 小于0.001毫微米 传真(电视)用的波长是3~6米;雷达用的波长更短,3米到几毫米 电磁辐射危害 电磁辐射危害人体的机理主要是热效应、非热效应和积累效应等。 热效应:人体内70%以上是水,水分子受到电磁波辐射后相互摩擦,引起机体升温,从而影响到身体其他器官的正常工作。
非热效应:人体的器官和组织都存在微弱的电磁场,它们是稳定和有序的,一旦受到外界电磁波的干扰,处于平衡状态的微弱电磁场即遭到破坏,人体正常循环机能会遭受破坏。 累积效应:热效应和非热效应作用于人体后,对人体的伤害尚未来得及自我修复之前再次受到电磁波辐射的话,其伤害程度就会发生累积,久之会成为永久性病态或危及生命。
对于长期接触电磁波辐射的群体,即使功率很小,频率很低,也会诱发想不到的病变,应引起警惕! 各国科学家经过长期研究证明:长期接受电磁辐射会造成人体免疫力下降、新陈代谢紊乱、记忆力减退、提前衰老、心率失常、视力下降、听力下降、血压异常、皮肤产生斑痘、粗。
电磁学是研究电磁和电磁的相互作用现象,及其规律和应用的物理学分支学科。根据近代物理学的观点,磁的现象是由运动电荷所产生的,因而在电学的范围内必然不同程度地包含磁学的内容。所以,电磁学和电学的内容很难截然划分,而“电学”有时也就作为“电磁学”的简称。
早期,由于磁现象曾被认为是与电现象独立无关的,同时也由于磁学本身的发展和应用,如近代磁性材料和磁学技术的发展,新的磁效应和磁现象的发现和应用等等,使得磁学的内容不断扩大,所以磁学在实际上也就作为一门和电学相平行的学科来研究了。
电磁学从原来互相独立的两门科学(电学、磁学)发展成为物理学中一个完整的分支学科,主要是基于两个重要的实验发现,即电流的磁效应和变化的磁场的电效应。这两个实验现象,加上麦克斯韦关于变化电场产生磁场的假设,奠定了电磁学的整个理论体系,发展了对现代文明起重大影响的电工和电子技术。
麦克斯韦电磁理论的重大意义,不仅在于这个理论支配着一切宏观电磁现象(包括静电、稳恒磁场、电磁感应、电路、电磁波等等),而且在于它将光学现象统一在这个理论框架之内,深刻地影响着人们认识物质世界的思想。
电子的发现,使电磁学和原子与物质结构的理论结合了起来,洛伦兹的电子论把物质的宏观电磁性质归结为原子中电子的效应,统一地解释了电、磁、光现象。
和电磁学密切相关的是经典电动力学,两者在内容上并没有原则的区别。一般说来,电磁学偏重于电磁现象的实验研究,从广泛的电磁现象研究中归纳出电磁学的基本规律;经典电动力学则偏重于理论方面,它以麦克斯韦方程组和洛伦兹力为基础,研究电磁场分布,电磁波的激发、辐射和传播,以及带电粒子与电磁场的相互作用等电磁问题,也可以说,广义的电磁学包含了经典电动力学。
公元前七世纪
发现磁石
管子(中国) thale(泰勒斯 希腊)
公元前二世纪
静电吸引
西汉初年
1600年
《地磁论》论述磁并导入“电的”electric
William Gilbert(吉尔伯特)
英国女王的御臣
1745年
莱顿瓶
电容器的原形,存贮电
Pieter van musschenbrock
(穆欣布罗克 荷兰莱顿)
Ewald Georg Von Kleit
(克莱斯特 德国)
1747年
电荷守恒定律
(正,负电的引入)
Benjamim Franktin
(富兰克林 美国)
1754年
避雷针
(电的实际应用)
Procopius Dirisch
(狄维施)
1785年
库仑定律
电磁学进入科学行列
Charles Auguste de Coulom
(库仑 法国)
1799年
发明电池
提供较长时间的电流
Alessandro Graf Volta
(伏打 意大利)
1820年
电流的磁效应
(电产生磁)
安培分子电流说
毕奥-萨伐尔定律
Hans Chanstan Oersted
(奥斯特 丹麦)
Andre Marie Ampere
(安培 法国)
Jean-Baptute Biot,Felix Savart
(毕奥,萨伐尔)
1826年
欧姆定律
Georg Simon ohm(欧姆)
1831年
电磁感应现象
(磁产生电)
Michael Faraday
(法拉第 英国)
1834年
楞次定律
楞次
1865年
麦克斯韦方程组
建立了电磁学理论,
预言了电磁波
Maxwell(麦克斯韦)
1888年
实验证实电磁波存在
Heinrich Hertz
(赫兹 德国)
1896年
光速公式
Hendrik Anoen Lorentz
(洛仑兹)
谢谢
光学,研究光的性质及其和物质间的各种相互作用的学科。
光是电磁波, 虽然可见光的波长范围在电磁波中只占很窄的一个波段,但是早在人们认识 到光是电磁波以前,人们就对光进行了研究。17世纪的科学家们对光的本质提出了两种假说:一种假说认为光是由许 多微粒组成的;另一种假说认为光是一种波动。
19世纪在实验中确定了光也 有类似于波的干涉现象,以后的实验证明光是电磁波。20世纪初又发现光具 有粒子性,人们在深入研究微观世界后,才认识到光具有波粒二象性。
光可以为物质所发射、吸收、反射、折射和衍射。当所研究的物体或空间的大小远大于光波的波长时,光可以当作沿直线进行的光线来处理;但当研究深入到现象细节,其空间范围和光波波长差不多大小的时候,就必须要考虑光的波动性。
而研究光和微观粒子的相互作用时,还要考虑光的粒子性。光学方法是研究大至天体、小至微生物及分子、原子结构非常有效的方法。
利用光的干涉效应可以进行非常精密的测量。物质所放出来的光携带着关于物质内部结构的重要信息。
基本的预备知识是麦克斯韦方程组中的四个方程所涉及的物理学定律。
库伦定律,磁场和电场下的高斯定律,法拉第电磁感应定律,以及毕奥萨伐尔环流定律(后来扩展成了安培环流定律。)
物理学方面的基础知识就是这些。
主要是数学方面的,
需要掌握微积分相关知识,以及矢量相关的几个简单的运算法则。
掌握一定的解微分方程,偏微分方程的方法(很对公式推导需要)。
基本上地磁场和电磁波理论方面的学习就需要这些了。
【电动力学】研究电磁运动一般规律的科学。
它以麦克斯韦方程组和洛仑兹力公式为出发点,运用数学方法,结合有关物质结构的知识,建立完整的电磁理论,分别从宏观和微观的角度来阐明各种电磁现象。同量子理论结合又产生了量子电动力学。
【电子的发现】19世纪末,电学兴起,这提供了破坏原子的方法。在低压气体下放电,原子被分为带电的两部分。
1897年,美国的汤姆逊在研究该两部分电荷时,发现其一带负电(称为电子),而另一个较重要的部分则带正电。这一事实说明原子不再是不可分割的。
1895年,德国的仑琴发现X光,接着贝克勒尔及居里夫妇相继发现放射性元素。放射性元素就是可放出“某些东西”的原子。
这些东西后来被称为α、β粒子,飞行很快。可穿透物质。
这一穿透能力很快应用于探讨原子内部构造的工具,实验结果有时粒子毫无阻碍地通过,有时则又发生猛烈的碰撞。用汤姆逊的原子模型不能解释。
1911年卢瑟福为了解释这一实验结果,提出一个新的原子模型。他证明:原子中带正电的部分必须集中于一个非常小而重的原子核里,而电子则如行星绕日般地围着原子核转动,原子核与电子间是有很大空隙的。
用这一模型算出的数值,证实了实验结果。【场的迭加原理】如果一个电场由n个点电荷共同激发时,那么电场中任一点的总场强将等于n个点电荷在该点各自产生场强的矢量和即【电力线】电力线是描述电场分布情况的图像。
它是由一系列假想的曲线构成。曲线上各点的切线方向和该点的电场方向一致,曲线的疏密程度,跟该处的电场强度成正比。
电力线比较形象地表示出电场的强弱和方向。在静电场中电力线从正电荷开始而终止于负电荷,不形成闭合线也不中断。
在涡旋电场中,电力线是没有起点和终点的闭合线。由于电场中的某一点只有一个电场方向,所以任何两条电力线不能相交。
电力线上各点的电势(电位)沿电力线方向不断减小。【法拉第】(Faraday,Michel,1791~1867)法拉第是著名的英国物理学家和化学家。
他发现了电磁感应现象,这在物理学上起了重要的作用。1834年他研究电流通过溶液时产生的化学变化,提出了法拉第电解定律。
这一定律为发展电结构理论开辟了道路,也是应用电化学的基础。1845年9月13日法拉第发现,一束平面偏振光通过磁场时发生旋转,这种现象被称为“法拉第效应”。
光既然与磁场发生相互作用,法拉第便认为光具有电磁性质。1852年他引进磁力线概念。
他主张电磁作用依靠充满空间的力线传递,为麦克斯韦电磁理论开辟了道路,也是提出光的电磁波理论的先驱,他的很多成就都是很重要的、带根本性的理论。他制造了世界上第一台发电机。
所有现代发电机都是根据法拉第的原理制作的。法拉第还发现电介质的作用,创立了介电常数的概念。
后来电容的单位“法拉”就是用他的名字命名的。法拉第从小就热爱科学,立志献身于科学事业,终于成为了一个伟大的物理学家。
【麦克斯韦】Maxwell James Clerk英国物理学家(1831~1879)。阿伯丁的马里查尔学院和伦敦皇家学院、剑桥大学教授,并且是著名的卡文迪什实验室的奠基人。
皇家学会会员。在汤姆逊的影响下进行电磁学的研究,提出了著名的麦克斯韦方程式,这是电磁学中场的最基本的理论。
麦克斯韦从理论上计算出电磁波传播速度等于光速,他认为:光就是电磁波的一种形态。对于统计力学、气体分子运动论的建立也作出了贡献。
引进了气体分子的速度分布律以及分子之间相互碰撞的平均自由程的概念。著有《论法拉第力线》、《论物理力线》、《电磁场运动论》、《论电和磁》、《气体运动论的证明》、《气体运动论》。
还著有《热理论》、《物质与运动》等教科书。【超距作用】一些早期的经典物理学者认为对于不相接触的物体间发生相互作用,如两电荷之间的作用力以及物体之间的万有引力都是所谓的“超距作用力”。
这种力与存在于两物体间的物质无关,而是以无限大速度在两物体间直接传递的。但是,电磁场的传播速度等于光速的这一事实说明电的作用力和电场的传播速度是有限的。
因此“超距作用”论便自然被否定了。实际上,电磁场就是物质的一种形态,因此不需借助其他物质传递。
【导体】在外电场作用下能很好地传导电流的物体叫做导体。导体之所以能导电,是由于它具有大量的可以自由移动的带电粒子(自由电子、离子等)。
电导率在102(欧姆·厘米)-1以上的固体(如金属),以及电解液等都是导体。金属和电解液分别依靠自由电子和正负离子起导电作用。
【自由电荷】存在于物质内部,在外电场作用下能够自由运动的正负电荷。金属导体中的自由电荷是带负电的电子,因为金属原子中的外层电子与原子核的联系很弱,在其余原子的作用下会脱离原来的原子而在整块金属中自由运动,在没有外电场时这种运动是杂乱无章的,因此不会形成电流。
在外电场作用下,电子能按一定方向流动而形成电流。电解液或气体中的离子也都是自由电荷。
【束缚电荷】电介质中的分子在电结构方面的特征是原子核对电子有很大的束缚力,即使在外电场的作用下,这些电荷也只能在微观范围有所偏离。但它。
《电磁场与电磁波》考试大纲 一、矢量分析基础 1。
矢量的基本代数运算; 2。 标量场的梯度、矢量场的散度、旋度的物理意义及运算,散度定理和斯托克斯定理的意义及应用; 3。
亥姆霍兹定理的内容及意义。 二、电磁场的基本规律 1.静电场、恒定电流场及恒定磁场的基本性质和基本方程(微分形式、积分形式、边界形式及本构关系); 2。
麦克斯韦方程组(微分形式、积分形式及边界形式); 3。 时变电磁场的矢量位、标量位、达朗贝尔方程; 4。
时变电磁场的电磁能量密度和能流密度矢量; 5。 时变电磁场的坡印廷定理,波动方程。
三、静态场及其边值问题的解 1.静态场中基本物理量的求解; 2。 静态场中的位函数(标量电、磁位及矢量磁位)及其微分方程; 3.镜像法; 4.直角坐标、柱坐标及球坐标中的分离变量法; 5.电阻、电容及电感等电路参数的计算; 6。
静态场的能量及其计算。 四、平面电磁波 1.时谐场及其复矢量表示法; 2。
波阻抗及平面电磁波的极化; 3.平面电磁波在理想介质和导电媒质中的传播规律; 4.平面电磁波在两种不同媒质平面分界面上的反射和透射规律; 5.平面电磁波垂直入射到多层媒质平面分界面上的问题。 五、电磁波辐射 1.达朗贝尔方程的解及其物理意义; 2.电偶极子的辐射特性; 3.电与磁的对偶性及磁偶极子的辐射特性; 4。
天线的基本参数。 参考书目: 《电磁场与电磁波》,谢处方等编,高等教育出版社,2006。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.214秒