学科知识:从数据分析涉及到的专业知识点上看,主要是这些:
(1)统计学:参数检验、非参检验、回归分析等
(2)数学:线性代数、微积分等
(3)社会学:主要是一些社会学量化统计的知识,如问卷调查与统计分析;还有就是一些社会学的知识,这些对于从事营销类的数据分析人员比较有帮助
(4)经济金融:如果是从事这个行业的数据分析人员,经济金融知识是必须的,这里就不多说了
(5)计算机:从事数据分析工作的人必须了解你使用的数据是怎么处理出来的,要了解数据库的结构和基本原理,同时如果条件充足的话,你还能有足够的能力从数据库里提取你需要的数据,这种提取数据分析原材料的能力是每个数据从业者必备的。
说到大数据,肯定少不了分析软件,这应该是大数据工作的根基,但市面上很多各种分析软件,如果不是过来人,真的很难找到适合自己或符合企业要求的。
小编通过各大企业对大数据相关行业的岗位要求,总结了以下几点:(1)SQL数据库的基本操作,会基本的数据管理(2)会用Excel/SQL做基本的数据分析和展示(3)会用脚本语言进行数据分析,Python or R(4)有获取外部数据的能力,如爬虫(5)会基本的数据可视化技能,能撰写数据报告(6)熟悉常用的数据挖掘算法:回归分析、决策树、随机森林、支持向量机等对于学习大数据,总体来说,先学基础,再学理论,最后是工具。基本上,每一门语言的学习都是要按照这个顺序来的。
1、学习数据分析基础知识,包括概率论、数理统计。基础这种东西还是要掌握好的啊,基础都还没扎实,知识大厦是很容易倒的哈。
2、你的目标行业的相关理论知识。比如金融类的,要学习证券、银行、财务等各种知识,不然到了公司就一脸懵逼啦。
3、学习数据分析工具,软件结合案列的实际应用,关于数据分析主流软件有(从上手度从易到难):Excel,SPSS,stata,R,Python,SAS等。4、学会怎样操作这些软件,然后是利用软件从数据的清洗开始一步步进行处理,分析,最后输出结果,检验及解读数据。
当然,学习数学与应用数学、统计学、计算机科学与技术等理工科专业的人确实比文科生有着客观的优势,但能力大于专业,兴趣才会决定你走得有多远。毕竟数据分析不像编程那样,需要你天天敲代码,要学习好多的编程语言,数据分析更注重的是你的实操和业务能力。
如今的软件学习都是非常简单便捷的,我们真正需要提升的是自己的逻辑思维能力,以及敏锐的洞察能力,还得有良好的沟通表述能力。这些都是和自身的努力有关,而不是单纯凭借理工科背景就可以啃得下来的。
相反这些能力更加倾向于文科生,毕竟好奇心、创造力也是一个人不可或缺的。
学习大数据要有一定的编程基础,这是大数据大部分岗位都需要的。
目前从事大数据方向的程序员比较普遍使用的语言有四种,分别是Python、Java、Scala和R,这四种语言都有一定的应用场景,不同岗位的程序员使用的语言也稍有不同。Python目前主要是应用在数据分析、数据挖掘和算法实现上,可以说大数据领域Python的应用是比较普遍的。
Java目前在大数据领域的应用还是跟平台有直接关系,通常在需要高性能的数据处理部分采用Java开发。Scala和R主要是基于场景的应用多一些,Scala构建在Java基础之上,代码结构要比Java简洁一些,同时Scala是Spark的实现语言,在与Spark相关的开发中使用Scala是比较方面的选择。
R语言本身的特点就是统计分析,语法简单且功能强大,是做大数据统计分析的一把利器。
学科知识:从数据分析涉及到的专业知识点上看,主要是这些:(1)统计学:参数检验、非参检验、回归分析等(2)数学:线性代数、微积分等(3)社会学:主要是一些社会学量化统计的知识,如问卷调查与统计分析;还有就是一些社会学的知识,这些对于从事营销类的数据分析人员比较有帮助(4)经济金融:如果是从事这个行业的数据分析人员,经济金融知识是必须的,这里就不多说了(5)计算机:从事数据分析工作的人必须了解你使用的数据是怎么处理出来的,要了解数据库的结构和基本原理,同时如果条件充足的话,你还能有足够的能力从数据库里提取你需要的数据,这种提取数据分析原材料的能力是每个数据从业者必备的。
大数据技术专业属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。
此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。
以中国人民大学为例:
基础课程:数学分析、高等代数、普通物理数学与信息科学概论、数据结构、数据科学导论、程序设计导论、程序设计实践。
必修课:离散数学、概率与统计、算法分析与设计、数据计算智能、数据库系统概论、计算机系统基础、并行体系结构与编程、非结构化大数据分析。
选修课:数据科学算法导论、数据科学专题、数据科学实践、互联网实用开发技术、抽样技术、统计学习、回归分析、随机过程。
扩展资料:
大数据岗位:
1、大数据系统架构师
大数据平台搭建、系统设计、基础设施。
技能:计算机体系结构、网络架构、编程范式、文件系统、分布并行处理等。
2、大数据系统分析师
面向实际行业领域,利用大数据技术进行数据安全生命周期管理、分析和应用。
技能:人工智能、机器学习、数理统计、矩阵计算、优化方法。
3、hadoop开发工程师。
解决大数据存储问题。
4、数据分析师
不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。
5、数据挖掘工程师
做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、凸优化、概率论等。经常会用到的语言包括Python、Java、C或者C++,我自己用Python或者Java比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。
参考资料来源:中国人民大学信息学院-数据科学与大数据技术
参考资料来源:百度百科-大数据采集与管理专业
大数据技术,已经远远超越了信息技术领域,涉及到的技术领域,包括云数据库、分布式计算、数据采集、数据分析等。
大数据系统,数据库的构架很庞大,很复杂,采用一种称为NoSQL的系统思想,NoSQL全称为Not only SQL,意思是不只是SQL,而不是不需要SQL,各种类型的数据库都要兼容,包括关系型数据库,网状数据库,实时数据库等都是NoSQL的一部分,都是大数据的数据源,以此数据库系统为构架,进行数据收集,分析,得出科学的数据分析结果。数据的收集包括商业信息(商品行情等),自然环境(人口密度、污染情况、防涝防寒重点区域等),工业系统(供热、供水、燃气等)数据,等等,数据量和类型都异常庞大,最后是数据分析,这就需要建立一个科学合理的数据分析模型。
理论是认知的必经途径,也是被广泛认同和传播的基线。我会从大数据的特征定义理解行业对大数据的整体描绘和定性;从对大数据价值的探讨来深入解析大数据的珍贵所在;从对大数据的现在和未来去洞悉大数据的发展趋势;从大数据隐私这个特别而重要的视角审视人和数据之间的长久博弈。
技术,技术是大数据价值体现的手段和前进的基石。我将分别从云计算、分布式处理技术、存储技术和感知技术的发展来说明大数据从采集、处理、存储到形成结果的整个过程。
实践,实践是大数据的最终价值体现。我将分别从互联网的大数据,政府的大数据,企业的大数据和个人的大数据四个方面来描绘大数据已经展现的美好景象及即将实现的上面是介绍的大数据,云计算是通过云服务器进行统计运算,和其他各种运算,需要的是服务器打造,和使用与什么计算希望能帮到你!!!谢谢。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.874秒