小学一年级 九九乘法口诀表。
学会基础加减乘。 小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。 小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。 必背定义、定理公式 三角形的面积=底*高÷2。
公式 S= a*h÷2 正方形的面积=边长*边长 公式 S= a*a 长方形的面积=长*宽 公式 S= a*b 平行四边形的面积=底*高 公式 S= a*h 梯形的面积=(上底+下底)*高÷2 公式 S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长*宽*高 公式:V=abh 长方体(或正方体)的体积=底面积*高 公式:V=abh 正方体的体积=棱长*棱长*棱长 公式:V=aaa 圆的周长=直径*π 公式:L=πd=2πr 圆的面积=半径*半径*π 公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
公式:V=Sh 圆锥的体积=1/3底面*积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。 读懂理解会应用以下定义定理性质公式 一、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)*5=2*5+4*5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 O除以任何不是O的数都得O。
简便乘法:被乘数、乘数末尾有O的乘法,可以先把O前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。 10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面(南京家教网整理) 1、单价*数量=总价 2、单产量*数量=总产量 3、速度*时间=路程 4、工效*时间=工作总量 5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数*因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商*除数。
一、复习方式 分三轮复习。
第一轮复习为基础知识的单元、章节复习。通过第一轮的复习,使学生系统掌握基础知识、基本技能和方法,形成明晰的知识网络和稳定的知识框架。
我们从双基入手,紧扣中考知识点来组织单元过关。结合学生的实际情况,我们实行严格的单元过关,对C层和B层的部分学生实行勤查、多问、多反复的方式巩固基础知识,在知识灵活化的基础上,还注重了培养学生阅读理解、分析问题、解决问题的能力。
第二轮复习打破章节界限实行大单元、小综合、专题式复习。第二轮复习绝不是第一轮复习的压缩,而是一个知识点综合、巩固、完善、提高的过程。
复习的主要任务及目标是:完成各部分知识的条理、归纳、糅合,使各部分知识成为一个有机的整体,力求实现基础知识重点化,重点知识网络化,网络知识题型化,题型设计生活化。在这一轮复习中,要以数学思想、方法为主线,学生的综合训练为主体,减少重复,突出重点。
在数学的应用方面,注意数学知识与生活、与其他学科知识的融合,穿插专题复习(如图表信息专题、经济决策专题、开放性问题、方案设计型问题、探索性问题等),向学生渗透题型生活化的意识,以此提高学生对阅读理解题的理解能力。 第三轮复习是知识、能力深化巩固的阶段,复习资料的组织以中考题及模拟题为主,回扣教材,查缺补漏,进行强化训练。
同时,要教给学生一些必备的应试技巧和方法,使学生有足够的自信从容地面对中考。由于考前的学习较为紧张,往往有部分学生易焦虑、浮躁,导致学习效率下降,在此阶段还应注意对学生的心态及时作出调整,使他们能以最佳的心态参加中考。
中考数学复习黄金方案 打好基础提高能力初三复习时间紧、任务重,在短短的时间内, 如何提高复习的效率和质量,是每位初三学生所关心的。为此,我谈 一些自己的想法,供大家参考。
一 、扎扎实实打好基础 1、重视课本,系统复习。初中数学基础包括基础知识和基本技能 两方面。
现在中考命题仍然以基础知识题为主,有些基础题是课本上 的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材 中的例题式习题,是教材中题目的引申、变形或组合,复习时应以课 本为主。 例如辽宁省2004年中考第17题:AB是圆O的弦,P是圆O的弦AB上的 一点,AB 10cm,AP 4cm,OP 5cm,则圆O的半径为() cm。
本题是初三几何课本的原题。这样的题还很多,它告诉我们学好 课本的重要性。
在复习时必须深钻教材,把书中的内容进行归纳整理, 使之形成自己的知识结构,尤其课后的读一读,想一想,有些中考题 就在此基础上延伸、拓展。一味地搞题海战术,整天埋头做大量练习 题,其效果并不佳,所以在做题中应注意解题方法的归纳和整理,做 到举一反三。
2、夯实基础,学会思考。中考有近70分为基础题,若把中档题和 较难题中的基础分计入,占的比值会更大。
所以在应用基础知识时应 做到熟练、正确、迅速。上课不能只听老师讲,要敢于质疑,积极思 考方法和策略,应通过老师的教,自己“悟”出来,自己“学”出来, 尤其在解决新情景问题的过程中,应感悟出如何正确思考。
3、重视基础知识的理解和方法的学习。基础知识既是初中所涉及 的概念、公式、公理、定理等。
掌握基础知识之间的联系,要做到理 清知识结构,形成整体知识,并能综合运用。例如:中考涉及的动点 问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中 的相似三角形、比例推导等等。
中考数学命题除了重视基础知识外,还十分重视对数学方法的考 查。如:配方法、换元法、判别式等操作性较强的方法。
二、综合运用知识,提高自身各种能力 初中数学基本能力有运算能力、思维能力、空间想像能力以及体 现数学与生产、生活相关学科相联系的能力等等。 1、提高综合运用数学知识解题的能力。
要求同学们必须做到能把 各个章节中的知识联系起来,并能综合运用,做到触类旁通。目前阶 段应根据自身实际,有针对性地复习,查漏补缺做好知识归纳、解题 方法的归纳。
纵观中考中对能力的考查,大致可分成两个阶段:一是考查运算 能力、空间想像能力和逻辑思维能力及解决纯数学问题的能力;二是 强调阅读能力、创新探索能力和数学应用能力。平时做题时应做到: 1)深刻理解知识本质,平时加强自己审题能力的锻炼,才能做到变更 命题的表达形式后不慌不忙,得心应手。
2)寻求不同的解题途径与变 通思维方式。注重自己思维的广阔性,对于同一题目,寻找不同的方 法,做到一题多解,这样才有利于打破思维定势,开拓思路,优化解 题方法。
3)变换几何图形的位置、形状、大小后能找到图形之间的联 系,知道哪些量没变、哪些量已改变。例如:折叠问题中折叠前后图 形全等是解决问题的关键。
2、狠抓重点内容,适当练习热点题型。多年来,初中数学的“方 程”、“函数”、“直线型”一直是中考重点内容。
“方程思想”、“函数思想”贯穿于试卷始终。另外,“开放题”、“探索题”、“阅读理解题”、“方案设计”、“动手操作”等问题也是近几年中 考的热点题型,这些中考题大部分来。
一、学生学习积极性的问题
现在的学生在课堂内外主动学习的能动性差,课堂上老师怎么说,他就怎么做,一旦离开了教室,知识就抛之脑后。这样的学习不仅效率低,而且师生双方都容易产生教学疲劳。或许有的教室懂得通过一些笑话、情境来提高学生的学习兴趣,但这也不是长久之计,久而久之学生也会习惯,甚至专注于此而忘记学习本身。这样的问题屡见不鲜,也是大多数老师所困惑的地方。
二、教师教学理念上的问题
许多老一辈教师,教了几十年书,用的同一套方法,也许曾出过优秀的学生,但在如今,却很有可能是行不通的。他们的教学手段相对陈旧,教学方式也很封闭,甚至仍有教师使用“填鸭式”教学,这与课改初衷相悖,也不适用于现代全面的素质教学。又或许有的教师是给出题目让学生自己求答案,自己动脑解决问题,但从本质上来说,这并没有改变一个思路上的桎梏,学生依然是按着老师的路子来走,这样的教学是走不出发散性、创新性思维的。
三、学习过程中“会学不会做”的问题
老师讲的时候明白,一旦换一种形式就不会做了,这样的问题是普遍存在的。相信很多教师都面临过这样的烦心事,明明自己在课堂上讲的十分清楚,却偏偏有一些学生在课后练习的时候面对题目无从下笔。这样的问题有学生反映过,也有老师专门思考过,但真正碰到的时候,往往就让人感到棘手。究竟该如何让学生既能听懂,又能举一反三,学会做题呢?
四、“优差生”分级造成的问题
有的班上同学成绩好,有的成绩差。分数的差异造成了学生之间分成两派——“优等生”和“差等生”。这也是许多教师所默认的,认为“优等生”就该聚在一起讨论学习,而“差等生”则随便教教就算了,千万不要影响了“优等生”。
这样的分化是扭曲、错误的。新课改的教学实践中,教师以及学生是一个整体,相互之间都不存在着优和差的隔阂,课堂上师生平等,教学上民主同思,才是能使教师与学生相互受益的良好氛围。
关于怎样学数学我看了很多网上对这个问题的回答,大都是一大篇一大篇的,表面上看似乎很专业、很有道理,但就是一点用处都没有,看了后没有一点帮助。
为什么呢?因为大多数这些回答者没能分清对象,都不对着目标放箭,这叫做无的放矢。他们忘了最根本的一点,那就是提出这个问题的人绝大多数都是数学没学好的,有的甚至连跟班都感到很困难,你跟他讲那么一大堆大道理有什么用呢?依我看还是来点简单实用点的好。
如果你对数学这门课程感到很吃力,那么你应该: 1,数学的基础很重要,数学这门课的特点是连惯性太强,每一个知识点就象我们上楼的每一级台阶,你某一个知识点没学好,就象那里少了一级台阶。 有的同学说,老师在课堂上讲我能听得懂,为什么做题时就是做不出来呢?这是因为课堂上老师讲好比开着灯上楼梯,虽然有一两级台阶没有(只要它们不连惯)还是能上去的,但做作业或考试时就象关着灯上楼梯,完全凭感觉走,没有任何人帮你指出哪里没有台阶,所以走到断级的时候不跌到才怪。
那这种情况怎么办呢?唯一的办法只有把缺少了的那级台阶补上去。其方法就是一定要抽出时间去看以前的课本,如果你拿某一本旧课本来看还是看不懂,那说明你要补的还在前面,暂时把这本书放下,去看更前面的旧课本。
只到你能完全弄明白了为止,然后从这一本书一直往后看,直到你现在所学的课本。我个人认为这比你为了完成任务而做作业重要得多,这才是你跟得上课程的根本保证。
我有一个外孙女就是这种情况。有一次她拿一道数学题来问我,那道题有四个知识点,我问她,她竟然一个都回答不了,我叫她先去看以前的课本上的相应部分再来做这个题,她竟然去问同学去了,结果当然是不了了之的把答案抄了一遍,完成了作业。
还说我不如她的同学厉害,我只有苦笑(在这里我不由的又要报怨现在的教育起来了,作业,作业,做孽,对优生是一条拖后腿的绳,对差生是套牢脖子的绳。当年我就是经常没能完成作业而。
这是题外话不说也罢)依我的看法,对于所谓的差生来说,花时间去学习以前被遗忘了的知识点比做作业要重要得多。当然我不是在这叫大家都不要做作业,而是说要花适当的时间去自己给自己补课。
2,要学好数学,兴趣最关键,人人都这么说。但归根到底还是基础要好才可能产生兴趣,一个人不可能对那个让自己陷入困境的事情产生兴趣。
所以成绩不好的同学还是要把时间多花在第一步上。如果你是一名中学生,那么小学课本应当能看懂吧,你能看懂它,做小学的一些奥数题你一定会觉得其乐无穷。
这样你就能培养起对数学的兴趣了。有了光趣还有什么做不好呢! 3,数学不是靠的死记硬背,要理解,怎样理解呢,还是在基础,所以成绩不好的同学还是要多把时间花在第一步上。
对于公式的记忆呢,只要求能记住最基本的就行了,其余的要学会自己推导出来,发明狂当年很多公式都记不住,但我能在考场上花上一两分钟就把需要的公式当场推导出来,这比你花死力气去死记要保险得多,而且绝对准确,这就叫做理解记忆,发明狂与课本无缘已有一二十年了,但做题时所要的公式还是能根据它的定义把它推导出来。所谓好钢用在刀刃上,就是这个意思,不要把时间花在毫无意义的事情上,死记硬背是靠不住的,关键时刻最容易出乱子,你一下子想不起,或对一个符号不敢确定,这一题就完了,而自己会推导就不一样了,一本书你要记的不过几个公式而已,从小学到高中真正要记忆的公式恐怕不会超过二十个吧。
比如:面积公式,只要记住矩形和圆的面积公式就行了。矩形面积=底X高(S=ab)。
三角形面积如何从这推导呢?在矩形中划一条对角线,是不是得两个面积一样大的三角形?那当然就有:(S=ab/2) 那梯形呢?在梯形中划一条对角线,是不是得两个三角形?而且它们的高相等?根据三角形面积公式就有S=ah/2+bh/2=(a+b)h/2。有一点要说的是你在推导公式时用特殊的情况就行了,因为你不是证明。
发明狂已多年没接触课本了,对课本都已不了解了,如有什么问题大家可以共同探讨,共同进步。 4,要多做题,多思考,才能打开思维面。
上面我反对作业不是叫你不要做作业,而是反对浪费时间去做那些对你来说一看就会毫无意义的作业。你应当把这钟时间花在做真正要做的题目上。
如果你确实觉得做作业是浪费时间,你可以向老师申请不做作业。我想老师应当同意的(你们现在的老师应当比我们那时的老师开明得多了吧?) 5,碰到好的题目时,要多思考一个问题:那就是——这个题是怎样提出来的?你能不能出一个相类似的题、或比它有所改变的题、或者有所提高的题。
这样下次碰到这一题或与它相类似的题时你就能很容易的做出来了。这也是训练发散思维的好方法。
也是发明家最重要的思维方式了。 6,认真听讲,有不懂的问题及时向老师或同学请教,只到弄懂为止,孔子都不耻下问呢,何况我们! 7,信心很重要,要相信自己一定能行才会成功。
废话就不多说了,最后希望你爱上数学,这样你一定会觉得数学是那样的其乐无穷了。还愁学不好数学?祝你成功。
数学是理化的基础,数学学好。
小学数学学习概述 数学学习主要是对学生数学思维能力的培养。
这要以数学基础知识和基本技能为基础,以数学问题为诱因,以数学思想方法为核心,以数学活动为主线,遵循数学的内在规律和学生的思维规律开展教学。学习类型分析 1.方式性分类 (1)接受学习与发现学习 定义:将学习的内容以定论的形式呈现给学习者的学习方式。
模式:呈现材料—讲解分析—理解领会—反馈巩固 (2)发现学习 定义:向学习者提供一定的背景材料,由学习者独立操作而习得知识的学习方式。 模式:呈现材料—假设尝试—认知整合—反馈巩固。
2.知识性分类一 (1)知识学习 定义:以理解、掌握数学基础知识为主的学习活动。过程:选择—领会—习得——巩固 (2)技能学习 定义:将一连串(内部或外部的)动作经练习而形成熟练的、自动化的反应过程。
过程:演示—模仿—练习—熟练—自动化 (3)问题解决学习 以关心问题解决过程为主、反思问题解决思考过程的一种数学学习活动。提出问题—分析问题—解决问题—反思过程3.知识性分类二 (1)概念性(陈述性)知识的学习 把数学中的概念、定义、公式、法则、原理、定律、规则等都称为概念性知识。
概念学习:同化与形成。 利用已有概念来学习相关新概念的方式,称概念同化;依靠直接经验,从大量的具体例子出发,概括出新概念的本质属性的方式,称为概念形成。
概念形成是小学生获得数学概念的主要形式。(2)技能性(程序性)知识的学习 小学数学技能主要是运算技能。
运算技能的形成分为三个阶段: ①认知阶段:“引导式”的尝试错误。从老师演算例题或自学法则中初步了解运算法则,在头脑中形成运算方法的表征。
②联结阶段:法则阶段,即按法则一步步地运算,保证算对(使用法则解决问题,陈述性知识提供了基本的操作线索)—程序化阶段(将相关的小法则整合为整体的法则系统,此时概念性知识已退出),能算得比较快速正确。③自动化阶段:更清楚更熟练地应用第二阶段中的程序,通过较多的练习,不再思考程序,达到一定程序的自动化,获得了运算的速度和较高的正确率。
(3)问题解决(策略性知识)的学习 通过重组所掌握的数学知识,找出解决当前问题的适用策略和方法,从而获得解决问题的策略的学习。小学生解决问题的主要方式,一是尝试错误式(又称试误法),即通过进行无定向的尝试,纠正暂时性 尝试错误,直至解决问题;二是顿悟式(也称启发式),好像答案或方法是突然出现的,而实际上是有一 定的“心向”作基础的,这就是问题解决所依据的规则、原理的评价和识别。
4.任务性分类 (1)记忆操作类学习 如口算、尺规作(画)图和掌握基本的运算法则并能进行准确计算等。(2)理解性的学习 如认识并掌握概念的内涵、懂得数学原理并能用于解释或说明、理解一个数学命题并能用于推得新命题。
(3)探索性的学习 如需要让学生经过自己探索,发现并提出问题或学习任务,让学生通过自己的探究能总结出一个数学规律或规则,让学生通过自己的探究过程而逐步形成新的策略性知识等。 小学生数学认知学习 一、小学生数学认知学习的基本特征 1.生活常识是小学生数学认知的起点 要在儿童的生活常识和数学知识之间构建一座桥梁,让儿童从生活常识和经验出发,不断通过尝试、探索和反思,从而达到“普通常识”的“数学化”。
2.小学生数学认知是一个主体的数学活动过程 数学认知过程要成为一个“做数学”的过程,让儿童从生活常识出发,在“做数学”的过程中,去发现、了解、体验和掌握数学,去认识数学的价值、了解数学的特性、总结数学的规律,去学会用数学、提高数学修养、发展数学能力。3.小学生数学认知思维具有直观化的特征 由于一方面儿童生活常识是其数学认知的基础,另一方面儿童思维是以直观具体形象思维为主,所以要以直观为主要手段,让儿童理解并构建起数学认知结构。
4.小学生数学认知是一个“再发现”和“再创造”的过程 小学生的数学学习,主要的不是被动的接受学习,而是主动的“再发现”和“再创造”学习的过程。要让他们在数学活动或是实践中去重新发现或重新创造数学的概念、命题、法则、方法和原理。
二、小学生数学认知发展的基本规律 1.小学生数学概念的发展 (1)从获得并建立初级概念为主发展到逐步理解并建立二级概念 (2)从认识概念的自身属性逐步发展到理解概念间的关系 (3)数学概念的建立受经验的干扰逐渐减弱2.小学生数学技能的发展 (1)从依赖结构完满的示范导向发展到依赖对内部意义的理解 (2)从外部的展开的思维发展到内部的压缩的思维 (3)数感和符号意识的逐步提高,支持着运算向灵活性、简洁性和多样性发展3.小学生空间知觉能力的发展 (1)方位感是逐步建立的 (2)空间概念的建立逐渐从外显特征的把握发展到对本质特征的把握 (3)空间透视能力是逐步增强的 4.小学生数学问题解决能力的发展 (1)语言表述阶段 (2)理解结构阶段 (3)多级推理能力的形成 (4)符号运算阶段 小学生数学能力的培养 一、数学能力概述 1.能力概述 能力是指个体能胜任某种活动所具有的心理特征2.数学能力 数学能力。
1、数与代数:数的认识、数的运算、式与方程、比和比例。
2、空间与图形:线与角、平面图形、立体图形、图形与变换、图形与位置。3、统计与可能性:量的计量、统计、可能性。
4、实践与综合应用:探索规律、一般复合应用问题、典型应用问题、分数和百分数应用问题、比和比例问题、解决问题的策略、综合应用问题。扩展资料:整数1、整数的意义:…像-4,-3,-2,-1,0,1,2,3,…这样的数叫整数。
2、自然数:我们在数物体的时候,用来表示物体个数的1,2,3,4……叫做自然数。一个物体也没有,用0表示,0也是自然数。
3、计数单位 一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。4、数位 计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。
7、什么叫比:两个数相除就叫做两个数的比。如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。
8、什么叫比例:表示两个比相等的式子叫做比例。如3:6=9:189、比例的基本性质:在比例里,两外项之积等于两内项之积。
10、解比例:求比例中的未知项,叫做解比例。如3:χ=9:18 解比例的依据是比例的基本性质。
11、正比例:两种相关联的量,一种量变化,另一种量也随着化,如果这两种量中相对应的的比值(也就是商k)一定,这两种量就叫做成正比例的量,它们的关系就叫做正比例关系。如:y/x=k(k一定)或kx=y12、反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系就叫做反比例关系。
如:x*y=k(k一定)或k/x=y 百分数:表示一个数是另一个数的百分之几的数,叫做百分数。百分数也叫做百分率或百分比。
13、把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号。其实,把小数化成百分数,只要把这个小数乘以100%就行了。
把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。14、把分数化成百分数,通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
其实,把分数化成百分数,要先把分数化成小数后,再乘以100%就行了。把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
15、要学会把小数化成分数和把分数化成小数的化法。16、最大公因数:几个数都能被同一个数一次性整除,这个数就叫做这几个数的最大公约数。
(或几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做最大公约数。)
17、互质数:公因数只有1的两个数,叫做互质数。18、最小公倍数:几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个叫做这几个数的最小公倍数。
19、通分:把异分母分数的分别化成和原来分数相等的同分母的分数,叫做通分。(通分用最小公倍数)20、约分:把一个分数化成同它相等,但分子、分母都比较小的分数,叫做约分。
(约分用最大公因数)21、最简分数:分子、分母是互质数的分数,叫做最简分数。分数计算到最后,得数必须化成最简分数。
个位上是0、2、4、6、8的数,都能被2整,即能用2进行 约分。个位上是0或者5的数,都能被5整除,即能用5进行约分。
在约分时应注意利用。22、偶数和奇数:能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。23、质数(素数):一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
24、合数:一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。1不是质数,也不是合数。
28、利息=本金*利率*时间(时间一般以年或月为单位,应与利率的单位相对应)29、利率:利息与本金的比值叫做利率。一年的利息与本金的比值叫做年利率。
一月的利息与本金的比值叫做月利率。30、自然数:用来表示物体个数的整数,叫做自然数。
0也是自然数。31、循环小数:一个小数,从小数部分的某一位起,一个数字或几个数字依次不断的重复出现,这样的小数叫做循环小数。
32、一天的时间:一天有24小时,一小时60分,1分60秒 参考资料来源:百度百科-小学数学知识 参考资料来源:百度百科-小学数学。
对于那些成绩较差的小学生来说,学习小学数学都有很大的难度,其实小学数学属于基础类的知识比较多,只要掌握一定的技巧还是比较容易掌握的.在小学,是一个需要养成良好习惯的时期,注重培养孩子的习惯和学习能力是重要的一方面,那小学数学有哪些技巧?
一、重视课内听讲,课后及时进行复习.
新知识的接受和数学能力的培养主要是在课堂上进行的,所以我们必须特别注意课堂学习的效率,寻找正确的学习方法.在课堂上,我们必须遵循教师的思想,积极制定以下步骤,思考和预测解决问题的思想与教师之间的差异.特别是,我们必须了解基本知识和基本学习技能,并及时审查它们以避免疑虑.首先,在进行各种练习之前,我们必须记住教师的知识点,正确理解各种公式的推理过程,并试着记住而不是采用"不确定的书籍阅读".勤于思考,对于一些问题试着用大脑去思考,认真分析问题,尝试自己解决问题.
二、多做习题,养成解决问题的好习惯.
如果你想学好数学,你需要提出更多问题,熟悉各种问题的解决问题的想法.首先,我们先从课本的题目为标准,反复练习基本知识,然后找一些课外活动,帮助开拓思路练习,提高自己的分析和掌握解决的规律.对于一些易于查找的问题,您可以准备一个用于收集的错题本,编写自己的想法来解决问题,在日常养成解决问题的好习惯.学会让自己高度集中精力,使大脑兴奋,快速思考,进入最佳状态并在考试中自由使用.
三、调整心态并正确对待考试.
首先,主要的重点应放在基础、基本技能、基本方法,因为大多数测试出于基本问题,较难的题目也是出自于基本.所以只有调整学习的心态,尽量让自己用一个清楚的头脑去解决问题,就没有太难的题目.考试前要多对习题进行演练,开阔思路,在保证真确的前提下提高做题的速度.对于简单的基础题目要拿出二十分的把握去做;难得题目要尽量去做对,使自己的水平能正常或者超常发挥.
由此可见小学数学的技巧就是多做练习题,掌握基本知识.另外就是心态,不能见考试就胆怯,调整心态很重要.所以大家可以遵循这些技巧,来提高自己的能力,使自己进入到数学的海洋中去.
小学数学基础知识整理总结(一到六年级) 小学一年级 九九乘法口诀表。
学会基础加减乘。 小学二年级 完善乘法口诀表,学会除混合运算,基础几何图形。
小学三年级 学会乘法交换律,几何面积周长等,时间量及单位。路程计算,分配律,分数小数。
小学四年级 线角自然数整数,素因数梯形对称,分数小数计算。 小学五年级 分数小数乘除法,代数方程及平均,比较大小变换,图形面积体积。
小学六年级 比例百分比概率,圆扇圆柱及圆锥。 必背定义、定理公式 三角形的面积=底*高÷2。
公式 s= a*h÷2 正方形的面积=边长*边长 公式 s= a*a 长方形的面积=长*宽 公式 s= a*b 平行四边形的面积=底*高 公式 s= a*h 梯形的面积=(上底+下底)*高÷2 公式 s=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长*宽*高 公式:v=abh 长方体(或正方体)的体积=底面积*高 公式:v=abh 正方体的体积=棱长*棱长*棱长 公式:v=aaa 圆的周长=直径*π 公式:l=πd=2πr 圆的面积=半径*半径*π 公式:s=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。
公式:s=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:s=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。
公式:v=sh 圆锥的体积=1/3底面*积高。公式:v=1/3sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。
分数的除法则:除以一个数等于乘以这个数的倒数。 读懂理解会应用以下定义定理性质公式 一、算术方面 1、加法交换律:两数相加交换加数的位置,和不变。
2、加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第三个数相加,和不变。 3、乘法交换律:两数相乘,交换因数的位置,积不变。
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5、乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。
如:(2+4)*5=2*5+4*5 6、除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。 o除以任何不是o的数都得o。
简便乘法:被乘数、乘数末尾有o的乘法,可以先把o前面的相乘,零不参加运算,有几个零都落下,添在积的末尾。 7、么叫等式?等号左边的数值与等号右边的数值相等的式子叫做等式。
等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8、什么叫方程式?答:含有未知数的等式叫方程式。
9、什么叫一元一次方程式?答:含有一个未知数,并且未知数的次 数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。
即例出代有χ的算式并计算。 10、分数:把单位"1"平均分成若干份,表示这样的一份或几分的数,叫做分数。
11、分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。
12、分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。
13、分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14、分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。
15、分数除以整数(0除外),等于分数乘以这个整数的倒数。 16、真分数:分子比分母小的分数叫做真分数。
17、假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。
18、带分数:把假分数写成整数和真分数的形式,叫做带分数。 19、分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。
20、一个数除以分数,等于这个数乘以分数的倒数。 21、甲数除以乙数(0除外),等于甲数乘以乙数的倒数。
数量关系计算公式方面 1、单价*数量=总价 2、单产量*数量=总产量 3、速度*时间=路程 4、工效*时间=工作总量 5、加数+加数=和 一个加数=和+另一个加数 被减数-减数=差 减数=被减数-差 被减数=减数+差 因数*因数=积 一个因数=积÷另一个因数 被除数÷除数=商 除数=被除数÷商 被除数=商*除数 有余数的除法: 被除数=商*除数+余数 一个数连续用两个数除,可以先把后两个数相乘,再用它们的积去除这个数,结果不变。例:90÷5÷6=90÷(5*6) 6、1公里=1千米 1千米=1000米 1米=10分米 1分米=10厘米 1厘米=10毫米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方厘米=1000立方毫米 1吨=1000千克 1千克= 1000克= 1公斤= 1市斤 1公顷=10000平方米。
1亩=666.666平方米。 1升=1立方分米=1000毫升 1毫升=1立方厘米 7、什么叫比:两个数相除就叫做两个数的比。
如:2÷5或3:6或1/3 比的前项和后项同时乘以或除以一个相同的数(0除外),比值不变。 8、什么叫比例:表示两个比相等的式子叫做比例。
如3:6=9:18 9、比例的基本。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.628秒