七年级到九年级数学必记重要知识点 1、过两点有且只有一条直线 2、两点之间线段最短 3、同角或等角的补角相等 4、同角或等角的余角相等 5、过一点有且只有一条直线和已知直线垂直 6、直线外一点与直线上各点连接的所有线段中,垂线段最短 7、平行公理 经过直线外一点,有且只有一条直线与这条直线平行 8、如果两条直线都和第三条直线平行,这两条直线也互相平行 9、同位角相等,两直线平行 10、内错角相等,两直线平行 11、同旁内角互补,两直线平行 12、两直线平行,同位角相等 13、两直线平行,内错角相等 14、两直线平行,同旁内角互补 15、定理 三角形两边的和大于第三边 16、推论 三角形两边的差小于第三边 17、三角形内角和定理 三角形三个内角的和等于180° 18、推论1 直角三角形的两个锐角互余 19、推论2 三角形的一个外角等于和它不相邻的两个内角的和 20、推论3 三角形的一个外角大于任何一个和它不相邻的内角 21、全等三角形的对应边、对应角相等 22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等 23、角边角公理( ASA)有两角和它们的夹边对应相等的 两个三角形全等 24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等 25、边边边公理(SSS) 有三边对应相等的两个三角形全等 26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等 27、定理1 在角的平分线上的点到这个角的两边的距离相等 28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上 29、角的平分线是到角的两边距离相等的所有点的集合 30、等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角) 31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边 32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33、推论3 等边三角形的各角都相等,并且每一个角都等于60° 34、等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35、推论1 三个角都相等的三角形是等边三角形 36、推论 2 有一个角等于60°的等腰三角形是等边三角形 37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38、直角三角形斜边上的中线等于斜边上的一半 39、定理 线段垂直平分线上的点和这条线段两个端点的距离相等 40、逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42、定理1 关于某条直线对称的两个图形是全等形 43、定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45、逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称 46、勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c2 47、勾股定理的逆定理 如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形 48、定理 四边形的内角和等于360° 49、四边形的外角和等于360° 50、多边形内角和定理 n边形的内角的和等于(n-2)*180° 51、推论 任意多边的外角和等于360° 52、平行四边形性质定理1 平行四边形的对角相等 53、平行四边形性质定理2 平行四边形的对边相等 54、推论 夹在两条平行线间的平行线段相等 55、平行四边形性质定理3 平行四边形的对角线互相平分 56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形 57、平行四边形判定定理2 两组对边分别相等的四边 形是平行四边形 58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形 59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形 60、矩形性质定理1 矩形的四个角都是直角 61、矩形性质定理2 矩形的对角线相等 62、矩形判定定理1 有三个角是直角的四边形是矩形 63、矩形判定定理2 对角线相等的平行四边形是矩形 64、菱形性质定理1 菱形的四条边都相等 65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角 66、菱形面积=对角线乘积的一半,即S=(a*b)÷2 67、菱形判定定理1 四边都相等的四边形是菱形 68、菱形判定定理2 对角线互相垂直的平行四边形是菱形 69、正方形性质定理1 正方形的四个角都是直角,四条边都相等 70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 71、定理1 关于中心对称的两个图形是全等的 72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分 73、逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称 74、等腰梯形性质定理 等腰梯形在同一底上的两个角相等 75、等腰梯形的两条对角线相等 76、等腰梯形判定定理 在同一底上的两个角。
一、复习方式 分三轮复习。
第一轮复习为基础知识的单元、章节复习。通过第一轮的复习,使学生系统掌握基础知识、基本技能和方法,形成明晰的知识网络和稳定的知识框架。
我们从双基入手,紧扣中考知识点来组织单元过关。结合学生的实际情况,我们实行严格的单元过关,对C层和B层的部分学生实行勤查、多问、多反复的方式巩固基础知识,在知识灵活化的基础上,还注重了培养学生阅读理解、分析问题、解决问题的能力。
第二轮复习打破章节界限实行大单元、小综合、专题式复习。第二轮复习绝不是第一轮复习的压缩,而是一个知识点综合、巩固、完善、提高的过程。
复习的主要任务及目标是:完成各部分知识的条理、归纳、糅合,使各部分知识成为一个有机的整体,力求实现基础知识重点化,重点知识网络化,网络知识题型化,题型设计生活化。在这一轮复习中,要以数学思想、方法为主线,学生的综合训练为主体,减少重复,突出重点。
在数学的应用方面,注意数学知识与生活、与其他学科知识的融合,穿插专题复习(如图表信息专题、经济决策专题、开放性问题、方案设计型问题、探索性问题等),向学生渗透题型生活化的意识,以此提高学生对阅读理解题的理解能力。 第三轮复习是知识、能力深化巩固的阶段,复习资料的组织以中考题及模拟题为主,回扣教材,查缺补漏,进行强化训练。
同时,要教给学生一些必备的应试技巧和方法,使学生有足够的自信从容地面对中考。由于考前的学习较为紧张,往往有部分学生易焦虑、浮躁,导致学习效率下降,在此阶段还应注意对学生的心态及时作出调整,使他们能以最佳的心态参加中考。
中考数学复习黄金方案 打好基础提高能力初三复习时间紧、任务重,在短短的时间内, 如何提高复习的效率和质量,是每位初三学生所关心的。为此,我谈 一些自己的想法,供大家参考。
一 、扎扎实实打好基础 1、重视课本,系统复习。初中数学基础包括基础知识和基本技能 两方面。
现在中考命题仍然以基础知识题为主,有些基础题是课本上 的原题或改造,后面的大题虽是“高于教材”,但原型一般还是教材 中的例题式习题,是教材中题目的引申、变形或组合,复习时应以课 本为主。 例如辽宁省2004年中考第17题:AB是圆O的弦,P是圆O的弦AB上的 一点,AB 10cm,AP 4cm,OP 5cm,则圆O的半径为() cm。
本题是初三几何课本的原题。这样的题还很多,它告诉我们学好 课本的重要性。
在复习时必须深钻教材,把书中的内容进行归纳整理, 使之形成自己的知识结构,尤其课后的读一读,想一想,有些中考题 就在此基础上延伸、拓展。一味地搞题海战术,整天埋头做大量练习 题,其效果并不佳,所以在做题中应注意解题方法的归纳和整理,做 到举一反三。
2、夯实基础,学会思考。中考有近70分为基础题,若把中档题和 较难题中的基础分计入,占的比值会更大。
所以在应用基础知识时应 做到熟练、正确、迅速。上课不能只听老师讲,要敢于质疑,积极思 考方法和策略,应通过老师的教,自己“悟”出来,自己“学”出来, 尤其在解决新情景问题的过程中,应感悟出如何正确思考。
3、重视基础知识的理解和方法的学习。基础知识既是初中所涉及 的概念、公式、公理、定理等。
掌握基础知识之间的联系,要做到理 清知识结构,形成整体知识,并能综合运用。例如:中考涉及的动点 问题,既是方程、不等式与函数问题的结合,同时也常涉及到几何中 的相似三角形、比例推导等等。
中考数学命题除了重视基础知识外,还十分重视对数学方法的考 查。如:配方法、换元法、判别式等操作性较强的方法。
二、综合运用知识,提高自身各种能力 初中数学基本能力有运算能力、思维能力、空间想像能力以及体 现数学与生产、生活相关学科相联系的能力等等。 1、提高综合运用数学知识解题的能力。
要求同学们必须做到能把 各个章节中的知识联系起来,并能综合运用,做到触类旁通。目前阶 段应根据自身实际,有针对性地复习,查漏补缺做好知识归纳、解题 方法的归纳。
纵观中考中对能力的考查,大致可分成两个阶段:一是考查运算 能力、空间想像能力和逻辑思维能力及解决纯数学问题的能力;二是 强调阅读能力、创新探索能力和数学应用能力。平时做题时应做到: 1)深刻理解知识本质,平时加强自己审题能力的锻炼,才能做到变更 命题的表达形式后不慌不忙,得心应手。
2)寻求不同的解题途径与变 通思维方式。注重自己思维的广阔性,对于同一题目,寻找不同的方 法,做到一题多解,这样才有利于打破思维定势,开拓思路,优化解 题方法。
3)变换几何图形的位置、形状、大小后能找到图形之间的联 系,知道哪些量没变、哪些量已改变。例如:折叠问题中折叠前后图 形全等是解决问题的关键。
2、狠抓重点内容,适当练习热点题型。多年来,初中数学的“方 程”、“函数”、“直线型”一直是中考重点内容。
“方程思想”、“函数思想”贯穿于试卷始终。另外,“开放题”、“探索题”、“阅读理解题”、“方案设计”、“动手操作”等问题也是近几年中 考的热点题型,这些中考题大部分来。
我只能给你总结一些知识点,见谅见谅 ,但是肯定比复制的好!初中的数学主要是分代数和几何两大部分,两者在中考中所占的比例,代数略大于几何(我不知道你是哪里的人,反正在我们江苏省泰州市的中考中是这样的)。
代数主要有以下几点:1,有理数的运算,主要讲有理数的三级运算(加减乘除和乘方开方)在这里要注意数字和字母的符号意识,就是,不要受小学数字的影响,一看见字母就不会做题了。2,整式的三级运算,注意符号意识的培养,还有就是因式分解,这和整式的乘法是互换的,注意像平方差公式和完全平方公式的正用、逆用和变形用。
3,方程,会一元一次、二元一次、三元一次、一元二次四种方程的解法和应用,记住,方程是一种方法,是一种解题的手段。4,函数,会识别一次函数、二次函数、反比例函数的图像,记住他们的特征,要会根据条件来应用。
尤其要注意二次函数,这是中考的重点和难点。应用题里会拿它来出一道难题的 几何主要有以下几点:1,识别各种平面图形和立体图形,这你应该非常熟悉。
2,图形的平移、旋转和轴对称,这个考察你的空间想象的能力,多做一些题。3,三角形的全等和相似,要会证明,注意要有完整的过程和严密的步骤,背过证明三角形全等的五种方法和证明相似的四种方法;还有像等腰三角形、直角三角形和黄金三角形的性质,要会应用,这在证明题中会有很大的帮助。
4,四边形,把握好平行四边形、长方形、正方形、菱形和梯形的概念,选择体里会拿着它们之间的微小差异而大做文章,注意它们的判定和性质,证明题里也会考到。5,圆,我这里没有细学,因为这里不是我们中考的重点,但是圆的难度会很大,它的知识点很多、很碎,圆的难题就是由许许多多细小的点构成的。
以上就是我对初中数学知识的总结,不过,这毕竟是我的东西,我是个高中生,初中的课本我也有一段时间没碰过了,有遗漏之处,就要靠你的努力了(不好意思,题目我也没有) 易错题型你可以看看"天骄之路"丛书或上网搜索,最好是向老师要一点资料.。
《公共基础知识》高效复习方法
《公共基础知识》考试时间紧、题量大、题型多、出题灵活、有一定难度,因此在事业单位公开招聘考试中较难取得高分。很多考生做不完全部试题是一种正常现象,能拿到高分的则是凤毛麟角,因此许多考生对《公共基础知识》望而生畏。
那么,《公共基础知识》就真的难以应对吗?答案是否定的。只要调整好心态,掌握正确的方法,通过考试是完全没有问题的。下面将从整体角度为考生“授之以渔”,为考生备考《公共基础知识》提供有效的复习方案。
不同阶段的学习方法与时间分配
首先,考生对待复习备考这个问题在思想上应当有一个正确的认识,仅凭自己原有的知识积累而在考试前只做一些试题、临时抱佛脚或者进行突击等做法都是不可取的,可以说,没有认真的准备,没有刻苦努力,没有针对性的练习,要想取得理想的成绩是不大可能的。事业单位公开招聘考试在近几年来岗位竞争激烈,考生要想胜出,必须要做好长期复习的准备。唯有付出辛勤的汗水,才能有收获的喜悦。
我们对考生复习准备的时间不做具体的规定,但给出一个建议,考生复习的时间应定在距离考试前一年左右开始,《公共基础知识》所涉及的知识面很广,需要考生长期的积累,凭借短时间的复习是不可靠的。
我们将复习过程分为三大阶段:第一阶段为计划准备阶段,即初始阶段;第二阶段为具体的复习备考阶段;第三阶段为考前冲刺阶段。
①计划准备阶段
当作出要参加事业单位公开招聘考试的决定后,最开始应了解关于考试的整体情况,包括概况、特点、形势等,首先在心里有个底,对于如何着手复习制订一个详细的计划,并在实施阶段中坚持按照计划去完成内容。
随后做1—2套真题,了解题型特点、难易度等,发现自己的不足,为自己在今后的复习过程中掌握侧重点做好准备工作。
②复习备考阶段
复习备考阶段是整个复习过程中最重要的阶段,这一阶段的认真程度可以直接决定考生应考能力的高低和基本功的强弱,考生要想最终通过该门考试,必须在这一阶段坚持不懈,认真打好基础。
具体来说,这一阶段主要完成的任务有三点:第一,对每一种题型作全面、细致的掌握,尤其对试题特点与答题规律和方法进行认真的学习,这是一个重要步骤;第二,通过做练习来巩固自己掌握的答题规律和方法,通过不断地练习实践来总结自己的答题经验,保证自己的答题方法既省时间又有较高的正确率。有一点要提醒考生的是,我们不主张考生无休止、无计划地做大量练习,而是要进行有针对性的、适度的练习,最终目的是为了掌握一套好的答题方法;第三,无论考生处于哪一个复习阶段都应有意识地对各科知识进行积累,在生活中多思考问题,多关注当地的社会热点、国际国内大事、政策方针等,久而久之,对最终的考试必然会大有益处。
③考前冲刺阶段
这一阶段是复习准备过程的最后阶段,也是关键阶段,从时间上看基本处于考前2—3个月。在该阶段主要应做的准备包括:
第一,认真研读考前公布的考试公告,考试公告会明确告诉考生考试的具体情况,包括报考职位、报考方式、报考时间、考试科目等。
第二,做一下近年的《公共基础知识》真题,目的在于发现问题,查漏补缺。这些问题可能是多方面的,对出现的问题要及时解决,主要有答题时间问题、答题方法问题、某些方面知识欠缺问题等。
第三,在临近考试的几天不用再做大量练习,但是要调整心态,使自己保持一个良好状态,有时间可以再对距离考试一年以内的一些热点要闻、新颁布的政策法律等作一个回顾和了解,让自己轻松、冷静的走进考场。
另外需要提醒考生的是,考试的现场会有严格的要求和程序安排,考生在考前应对相关内容作认真了解,考试中应严格按照要求来操作。由于《公共基础知识》题量大、时间紧,试题具有一定难度,因此,应试者不要在进考场时给自己定下任何不现实的目标,例如一定要把题做完,一定要取得高分等。这无形之中给自己带来了压力和不必要的紧张情绪。命题专家根据历年事业单位公开招聘考试的应该经验和案例分析总结出,要想取胜,应当在做题时把握一个原则,即先易后难,保证正确率。
公共基础是当前我国公务员及一切获得国家财政编制身份的考试途径中必考科目。公共基础是综合性概念,它的内容包括政治、经济、法律、哲学、天文、地理、宗教、行政、文学、艺术、数学、历史、科技等诸多方面。也就是说,它实际上是一个极为广博全面的知识集合。当前我国并没有官方发布的公共基础指定教材。
目前我国公务员考试及教师入编考试都要求在考试专业知识的同时加试公共基础知识。这对于选拔知识面全面的人才是有利的。但对教师而言,则往往是多此一举,因为教师早已不属于公务员群体,对教师考察公共基础有画蛇添足之嫌。
作/译者:中国银行业从业人员资格认证办公室 出版社:中国金融出版社
出版日期:2008年08月
ISBN:9787504946249 [十位:7504946249]
页数:312 重约:0.369KG
定价:¥37.00
编辑本段
内容介绍
本教材以国内银行业发展的实际需要为主导,突出实用性,兼顾前瞻性,主要由银行知识与业务、银行业相关法律法规和银行业从业人员职业操守三部分组成。
作者简介
姓名:中国银行业从业人员资格认证办公室 编著
1过两点有且只有一条直线 2 两点之间线段最短3 同角或等角的补角相等 4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理 经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行 10 内错角相等,两直线平行11 同旁内角互补,两直线平行 12两直线平行,同位角相等13 两直线平行,内错角相等 14 两直线平行,同旁内角互补15 定理 三角形两边的和大于第三边16 推论 三角形两边的差小于第三边17 三角形内角和定理 三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理 有两角和它们的夹边对应相等的两个三角形全等24 推论 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理 有三边对应相等的两个三角形全等26 斜边、直角边公理 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理 等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理 线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理 如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理 直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理 如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理 四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理 n边形的内角的和等于(n-2)*180°51推论 任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论 夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a*b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理 如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理 等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理 在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理 如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理 三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理 梯形的中位线平行于两底,并且等于两底和的一半 。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.578秒