一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x)。
则y=f(x)的反函数为y=f-1(x)。 存在反函数的条件是原函数必须是一一对应的(不一定是整个数域内的) 【反函数的性质】 (1)互为反函数的两个函数的图象关于直线y=x对称; (2)函数存在反函数的充要条件是,函数在它的定义域上是单调的; (3)一个函数与它的反函数在相应区间上单调性一致; (4)偶函数一定不存在反函数,奇函数不一定存在反函数。
若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。
(8)反函数是相互的 (9)定义域、值域相反对应法则互逆 (10)不是所有函数都有反函数如y=x的偶次方 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)。
在教学过程中可以引导学生仿照正比例函数图象的的画法。
(1)列表:列表给出自变量与函数的一些对应值。 强调注意: ① x≠0 ②列表时自变量取值易于计算,易于描点。
(2)描点。以表中对应值为坐标,在平面直角坐标系内描出相应的点。
连线。 按照自变量由小到大的顺序,把所描的点用平滑的曲线连接起来。
(4)观察图象与一次函数的图象作对比。 总结作反比例函数图象注意的问题。
(1)。列表时,选取的自变量的值,既要易于计算,又要便于描点,尽量多取一些数值(取互为相反数的一对一对的数),多描一些点,这样既可以方便连线,又可以使图象精确。
(2)。描点时要严格按照表中所列的对应值描点,绝对不能把点的位置描错。
(3)。一定要养成按自变量从小到大的顺序依次画线,连线时必须用光滑的曲线连接各点,不能用折线连接。
(4)。图像是延伸的,注意不要画成有明确端点。
(5)。曲线的发展趋势只能靠近坐标轴,但不能和坐标轴相交。
x=f⁻¹(y) 。
一般来说,设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。反函数x=f -1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。
最具有代表性的反函数就是对数函数与指数函数。一般地,如果x与y关于某种对应关系f(x)相对应,y=f(x),则y=f(x)的反函数为x=f-1(y)。
存在反函数(默认为单值函数)的条件是原函数必须是一一对应的(不一定是整个数域内的)。注意:上标"−1"指的是函数幂,但不是指数幂。
反函数定义 一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= f(y). 若对于y在C中的任何一个值,通过x= f(y),x在A中都有唯一的值和它对应,那么,x= f(y)就表示y是自变量,x是因变量y的函数,这样的函数x= f(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^-1(x). 反函数y=f^-1(x)的定义域、值域分别是函数y=f(x)的值域、定义域. [编辑本段]反函数性质 (1)互为反函数的两个函数的图象关于直线y=x对称; (2)函数存在反函数的必要条件是,函数的定义域与值域是一一映射; (3)一个函数与它的反函数在相应区间上单调性一致; (4)大部分偶函数不存在反函数(唯一有反函数的偶函数是f(x)=a,x∈{0})。
奇函数不一定存在反函数。被与y轴垂直的直线截时能过2个及以上点即没有反函数。
若一个奇函数存在反函数,则它的反函数也是奇函数。 (5)一切隐函数具有反函数; (6)一段连续的函数的单调性在对应区间内具有一致性; (7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】。
(8)反函数是相互的 (9)定义域、值域相反对应法则互逆(三反) (10)原函数一旦确定,反函数即确定(三定) 例:y=2x-1的反函数是y=0.5x+0.5 y=2^x的反函数是y=log2 x 例题:求函数3x-2的反函数 解:y=3x-2的定义域为R,值域为R. 由y=3x-2解得 x=1/3(y+2) 将x,y互换,则所求y=3x-2的反函数是 y=1/3(x+2)(x属于R) (11)反函数的导数关系:如果X=F(X)在区间I上单调,可导,且F'(Y)不等于0,那么他的反函数Y=F'(X)在区间S={X|X=F(Y),Y属于I }内也可导,且[F'(X)]'=1\F'(Y)。 [编辑本段]反函数说明 ⑴在函数x=f'(y)中,y是自变量,x是函数,但习惯上,我们一般用x表示自变量,用y 表示函数,为此我们常常对调函数x=f'(y)中的字母x,y,把它改写成y=f'(x),今后凡无特别说明,函数y=f(x)的反函数都采用这种经过改写的形式。
⑵反函数也是函数,因为它符合函数的定义. 从反函数的定义可知,对于任意一个函数y=f(x)来说,不一定有反函数,若函数y=f(x)有反函数y=f'(x),那么函数y=f'(x)的反函数就是y=f(x),这就是说,函数y=f(x)与y=f'(x)互为反函数。 ⑶从映射的定义可知,函数y=f(x)是定义域A到值域C的映射,而它的反函数y=f'(x)是集合C到集合A的映射,因此,函数y=f(x)的定义域正好是它的反函数y=f'(x)的值域;函数y=f(x)的值域正好是它的反函数y=f'(x)的定义域(如下表): 函数:y=f(x) 反函数:y=f'(x) 定义域: A C 值域: C A ⑷上述定义用“逆”映射概念可叙述为: 若确定函数y=f(x)的映射f是函数的定义域到值域“上”的“一一映射”,那么由f的“逆”映射f^-1所确定的函数x=f'(x)就叫做函数y=f(x)的反函数. 反函数x=f'(x)的定义域、值域分别是函数y=f(x)的值域、定义域. 开始的两个例子:s=vt记为f(t)=vt,则它的反函数就可以写为f'(t)=t/v,同样y=2x+6记为f(x)=2x+6,则它的反函数为:f'(x)=x/2-3. 有时是反函数需要进行分类讨论,如:f(x)=X+1/X,需将X进行分类讨论:在X大于0时的情况,X小于0的情况,多是要注意的。
一般分数函数的反函数的表示为y=ax+b/cx+d(a/c不等于b/d)--y=b-dx/cx+a [编辑本段]反函数应用 直接求原函数的值域困难时,可以通过求其反函数的定义域来确定原函数的值域,求反函数的步骤是这样的: 1、先求出反函数的定义域,因为原函数的值域就是反函数的定义域; (我们知道函数的三要素是定义域、值域、对应法则,所以先求反函数的定义域是求反函数的第一步) 2、反解x,也就是用y来表示x; 3、改写,交换位置,也就是把x改成y,把y改成x; 4、写出原函数及其值域。 实例:y=2x+1(值域:任意实数) x=(y-1)/2 y=(x-1)/2(x取任意实数) 特别地,形如kx+ky=b的直线方程和任意一个反比例函数,它的反函数都是它本身。
如果要习题的话,跟我说 我已经加Q了 Q上详谈~! 望采纳~!互相帮助~十分感谢~。
反三角函数就是三角函数的反函数。
公式:反三角函数和三角函数关系计算公式Secant(正割) Sec(X)=1/Cos(X) Cosecant(余割) Cosec(X) =1/Sin(X) Cotangent(余切) Cotan(X) =1/Tan(X) Inverse Sine(反正弦) Arcsin(X) = Atn(X / Sqr(-X * X + 1)) Inverse Secant(反正割)Arcsec(X)=Atn(X/Sqr(X* X-1))+Sgn((X)- 1) * (2 * Atn(1)) Inverse Cosecant(反余割) Arccosec(X) =Atn(X/Sqr(X*X-1))+(Sgn(X)- 1)*(2*Atn(1)) Inverse Cotangent(反余切) Arccotan(X)=Atn(X)+2*Atn(1)。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.689秒