基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。
hadoop mapreduce hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。
大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
学习大数据不是一朝一夕的事情,想要学好大数据可以看口扣丁学堂的视频,希望对你有帮助。
大数据的基础知识,科普类的,自己去买本书就行了,大数据时代这样的书很多介绍的大数据的。
另外大数据的技术,如数据采集,数据存取,基础架构,数据处理,统计分析,数据挖掘,模型预测,结果呈现。当然一些大数据的一些基础知识,比如java和hadoop等等,这个基本得自学。
大学里面最接近这些的也就是计算机类专业。云计算的话,需要学习的知识应该包括但不限于:1、网络通信知识,包括互联网基础建设相关的所有知识;2、虚拟化知识,应该了解硬件运行原理以及虚拟化实现技术;3、数据库技术;4、网络存储技术;5、网络信息安全技术,最起码得明白什么是iso 17799;6、电子商务;7、容灾及备份技术;8、JAVA编程技术;9、分布式软件系统架构。
基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。
hadoop mapreduce hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。 大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。 大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。 大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。
大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值密度)、Veracity(真实性)。
基础阶段:Linux、Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。
hadoop mapreduce hdfs yarn:hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。
大数据存储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业实战阶段:实操企业大数据处理业务场景,分析需求、解决方案实施,综合技术实战应用。
大数据(big data,mega data),或称巨量资料,指的是需要新处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。 在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据进行分析处理。大数据的5V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值密度)、Veracity(真实性)。
大数据的5个“V”,或者说特点有五层面:
第一,数据体量巨大
从TB级别,跃升到PB级别。
第二,数据类型繁多
前文提到的网络日志、视频、图片、地理位置信息等等。
第三,价值密度低
以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。
第四,处理速度快
1秒定律。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。
物联网、云计算、移动互联网、车联网、手机、平板电脑、PC以及遍布地球各个角落的各种各样的传感器,无一不是数据来源或者承载的方式。
大讲台大数据培训为你解答:
简而言之,从大数据中提取大价值的挖掘技术。专业的说,就是根据特定目标,从数据收集与存储,数据筛选,算法分析与预测,数据分析结果展示,以辅助作出最正确的抉择,其数据级别通常在PB以上,复杂程度前所未有。
关键作用是什么?
挖掘出各个行业的关键路径,帮助决策,提升社会(或企业)运作效率。
最初是在怎样的场景下提出?
在基础学科经历信息快速发展之后,就诞生了“大数据”的说法。但其实是随着数据指数级的增长,尤其是互联网商业化和传感器移动化之后,从大数据中挖掘出某个事件现在和未来的趋势才真正意义上被大众所接触。
大数据技术包含的内容概述?
非结构化数据收集架构,数据分布式存储集群,数据清洗筛选架构,数据并行分析模拟架构,高级统计预测算法,数据可视化工具。
大数据技术学习路线指南:
大数据技术的具体内容?
分布式存储计算架构(强烈推荐:Hadoop)
分布式程序设计(包含:ApachePig或者Hive)
分布式文件系统(比如:GoogleGFS)
多种存储模型,主要包含文档,图,键值,时间序列这几种存储模型(比如:BigTable,Apollo,DynamoDB等)
数据收集架构(比如:Kinesis,Kafla)
集成开发环境(比如:R-Studio)
程序开发辅助工具(比如:大量的第三方开发辅助工具)
调度协调架构工具(比如:ApacheAurora)
机器学习(常用的有ApacheMahout或H2O)
托管管理(比如:)
安全管理(常用的有Gateway)
大数据系统部署(可以看下ApacheAmbari)
搜索引擎架构(学习或者企业都建议使用Lucene搜索引擎)
多种数据库的演变(MySQL/Memcached)
商业智能(大力推荐:Jaspersoft)
数据可视化(这个工具就很多了,可以根据实际需要来选择)
大数据处理算法(10大经典算法)
大数据中常用的分析技术?
A/B测试、关联规则挖掘、数据聚类、
数据融合和集成、遗传算法、自然语言处理、
神经网络、神经分析、优化、模式识别、
预测模型、回归、情绪分析、信号处理、
空间分析、统计、模拟、时间序列分析
大数据(big data),或称巨量资料,指的是所涉及的资料量规模巨大到无法通过目前主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
(在维克托·迈尔-舍恩伯格及肯尼斯·库克耶编写的《大数据时代》中大数据指不用随机分析法(抽样调查)这样的捷径,而采用所有数据的方法[2])大数据的4V特点:Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。说起大数据,就要说到商业智能:商业智能(Business Intelligence,简称:BI),又称商业智慧或商务智能,指用现代数据仓库技术、线上分析处理技术、数据挖掘和数据展现技术进行数据分析以实现商业价值。
商业智能作为一个工具,是用来处理企业中现有数据,并将其转换成知识、分析和结论,辅助业务或者决策者做出正确且明智的决定。是帮助企业更好地利用数据提高决策质量的技术,包含了从数据仓库到分析型系统等。
商务智能的产生发展 商业智能的概念经由Howard Dresner(1989年)的通俗化而被人们广泛了解。当时将商业智能定义为一类由数据仓库(或数据集市)、查询报表、数据分析、数据挖掘、数据备份和恢复等部分组成的、以帮助企业决策为目的技术及其应用。
商务智能是20世纪90年代末首先在国外企业界出现的一个术语,其代表为提高企业运营性能而采用的一系列方法、技术和软件。它把先进的信息技术应用到整个企业,不仅为企业提供信息获取能力,而且通过对信息的开发,将其转变为企业的竞争优势,也有人称之为混沌世界中的智能。
因此,越来越多的企业提出他们对BI的需求,把BI作为一种帮助企业达到经营目标的一种有效手段。 目前,商业智能通常被理解为将企业中现有的数据转化为知识,帮助企业做出明智的业务经营决策的工具。
这里所谈的数据包括来自企业业务系统的订单、库存、交易账目、客户和供应商资料及来自企业所处行业和竞争对手的数据,以及来自企业所处的其他外部环境中的各种数据。而商业智能能够辅助的业务经营决策既可以是作业层的,也可以是管理层和策略层的决策。
为了将数据转化为知识,需要利用数据仓库、线上分析处理(OLAP)工具和数据挖掘等技术。因此,从技术层面上讲,商业智能不是什么新技术,它只是ETL、数据仓库、OLAP、数据挖掘、数据展现等技术的综合运用。
把商业智能看成是一种解决方案应该比较恰当。商业智能的关键是从许多来自不同的企业运作系统的数据中提取出有用的数据并进行清理,以保证数据的正确性,然后经过抽取(Extraction)、转换(Transformation)和装载(Load),即ETL过程,合并到一个企业级的数据仓库里,从而得到企业数据的一个全局视图,在此基础上利用合适的查询和分析工具、数据挖掘工具、OLAP工具等对其进行分析和处理(这时信息变为辅助决策的知识),最后将知识呈现给管理者,为管理者的决策过程提供支持。
企业导入BI的优点1.随机查询动态报表 2.掌握指标管理 3.随时线上分析处理 4.视觉化之企业仪表版 5.协助预测规划 导入BI的目的1.促进企业决策流程(Facilitate the Business Decision-Making Process):BIS增进企业的资讯整合与资讯分析的能力,汇总公司内、外部的资料,整合成有效的决策资讯,让企业经理人大幅增进决策效率与改善决策品质。 2.降低整体营运成本(Power the Bottom Line):BIS改善企业的资讯取得能力,大幅降低IT人员撰写程式、Poweruser制作报表的时间与人力成本,而弹性的模组设计介面,完全不需撰写程式的特色也让日后的维护成本大幅降低。
3.协同组织目标与行动(Achieve a Fully Coordinated Organization):BIS加强企业的资讯传播能力,消除资讯需求者与IT人员之间的认知差距,并可让更多人获得更有意义的资讯。全面改善企业之体质,使组织内的每个人目标一致、齐心协力。
商业智能领域的技术应用 商业智能的技术体系主要有数据仓库(Data Warehouse,DW)、联机分析处理(OLAP)以及数据挖掘(Data Mining,DM)三部分组成。 数据仓库是商业智能的基础,许多基本报表可以由此生成,但它更大的用处是作为进一步分析的数据源。
所谓数据仓库(DW)就是面向主题的、集成的、稳定的、不同时间的数据集合,用以支持经营管理中的决策制定过程。多维分析和数据挖掘是最常听到的例子,数据仓库能供给它们所需要的、整齐一致的数据。
在线分析处理(OLAP)技术则帮助分析人员、管理人员从多种角度把从原始数据中转化出来、能够真正为用户所理解的、并真实反映数据维特性的信息,进行快速、一致、交互地访问,从而获得对数据的更深入了解的一类软件技术。 数据挖掘(DM)是一种决策支持过程,它主要基于AI、机器学习、统计学等技术,高度自动化地分析企业原有的数据,做出归纳性的推理,从中挖掘出潜在的模式,预测客户的行为,帮助企业的决策者调整市场策略,减少风险,做出正确的决策。
商业智能的应用范围 1.采购管理 2.财务管理 3.人力资源管理 4.客户服务 5.配销管理 6.生产管理 7.销售管理 8.行销管理 商业智能实施步骤 商。
大数据课程:
基础阶段:Linux、百Docker、KVM、MySQL基础、Oracle基础、MongoDB、redis。
hadoop mapreduce hdfs yarn:度hadoop:Hadoop 概念、版本、历史,HDFS工作原理,YARN介绍及组件介绍。
大数据专储阶段:hbase、hive、sqoop。
大数据架构设计阶段:Flume分布式、Zookeeper、Kafka。
大数据实时计算阶段:Mahout、Spark、storm。
大数据数据采集阶段:Python、Scala。
大数据商业回实战阶段:实操企业大数据处理业务场答景,分析需求、解决方案实施,综合技术实战应用。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.606秒