圆的有关性质
一,〖知识点〗圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质
〖大纲要求〗
1. 正确理解和应用圆的点集定义,掌握点和圆的位置关系;
2. 熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。一个
圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;
3. 熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半
径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;
4. 掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的
圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;
5. 掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关
问题;
6. 注意:(1)垂径定理及其推论是指:一条弦①在“过圆心”②“垂直于另一条弦”
③“平分这另一条弦”④“平分这另一条弦所对的劣弧”⑤“ 平分这另一条弦所对的优弧”的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;(2)有弦可作弦心距组成垂径定理图形;见到直径要想到它所对的圆周角是直角,想垂径定理;想到过它的端点若有切线,则与它垂直,反之,若有垂线则是切线,想到它被圆心所平分;(3)见到四个点在圆上想到有4组相等的同弧所对的圆周角,要想到应用圆内接四边形的性质。
〖考查重点与常见题型〗
1. 判断基本概念、基本定理等的正误,在中考题中常以选择题、填空题的形式考查学
生对基本概念和基本定理的正确理解,如:下列语句中,正确的有( )
(A)相等的圆心角所对的弧相等 (B)平分弦的直径垂直于弦
(C)长度相等的两条弧是等弧 (D)弦过圆心的每一条直线都是圆的对称轴
2. 论证线段相等、三角形相似、角相等、弧相等及线段的倍分等。此种结论的证明重
点考查了全等三角形和相似三角形判定,垂径定理及其推论、圆周角、圆心角的性质及切线的性质,弦切角等有关圆的基础知识,常以解答题形式出现。
二,〖知识点〗
相交弦定理、切割线定理及其推论
〖大纲要求〗
1. 正误相交弦定理、切割线定理及其推论;
2. 了解圆幂定理的内在联系;
3. 熟练地应用定理解决有关问题;
4. 注意(1)相交弦定理、切割线定理及其推论统称为圆幂定理,圆幂定理是圆和相似
三角形结合的产物。这几个定理可统一记忆成一个定理:过圆内或圆外一点作圆的两条割线,则这两条割线被圆截出的两弦被定点分(内分或外分)成两线段长的积相等(至于切线可看作是两条交点重合的割线)。使用时注意每条线段的两个端点一个是公共点,另一个是与圆的交点;
(2)见圆中有两条相交想到相交弦定理;见到切线与一条割线相交则想到切割线定理;若有两条切线相交则想到切线长定理,并熟悉此时图形中存在着一个以交点和圆心连线为对称轴的对称图形。
、圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
2、圆心:圆任意两条对称轴的交点为圆心。 注:圆心一般符号O表示
3、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。直径一般用字母d表示。
4、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。半径一般用字母r表示。
5、圆的直径和半径都有无数条。圆是轴对称图形,每条直径所在的直线是圆的对称轴
6、在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。
7、圆的半径或直径决定圆的大小,圆心决定圆的位置。
8、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。
9、圆周率:圆的周长与直径的比值叫做圆周率。
10、圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。
11、直径所对的圆周角是直角。90°的圆周角所对的弦是直径。
12、圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。
13、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。
14、在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
二、周长计算公式
(1)已知直径:C=πd
(2)已知半径:C=2πr
(3)已知周长:D=c/π
(4)圆周长的一半:1/2周长(曲线)
(5)半圆的周长:1/2周长+直径(π÷2+1)
三、面积计算公式:
(1)已知半径:S=πr2
(2)已知直径:S=π(d/2)2
(3)已知周长:S=π[c÷(2π)]2
1、圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆。
2、圆心:圆任意两条对称轴的交点为圆心。 注:圆心一般符号O表示3、直径:通过圆心,并且两端都在圆上的线段叫做圆的直径。
直径一般用字母d表示。4、半径:连接圆心和圆上任意一点的线段,叫做圆的半径。
半径一般用字母r表示。5、圆的直径和半径都有无数条。
圆是轴对称图形,每条直径所在的直线是圆的对称轴6、在同圆或等圆中:直径是半径的2倍,半径是直径的二分之一.d=2r或r=d/2。7、圆的半径或直径决定圆的大小,圆心决定圆的位置。
8、圆的周长:围成圆的曲线的长度叫做圆的周长,用字母C表示。9、圆周率:圆的周长与直径的比值叫做圆周率。
10、圆的周长除以直径的商是一个固定的数,把它叫做圆周率,它是一个无限不循环小数(无理数),用字母π表示。计算时,通常取它的近似值,π≈3.14。
11、直径所对的圆周角是直角。90°的圆周角所对的弦是直径。
12、圆的面积公式:圆所占平面的大小叫做圆的面积。πr^2;,用字母S表示。
13、在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦心距也相等。14、在同圆或等圆中,如果两条弧相等,那么他们所对的圆心角相等,所对的弦相等,所对的弦心距也相等。
二、周长计算公式(1)已知直径:C=πd(2)已知半径:C=2πr(3)已知周长:D=c/π(4)圆周长的一半:1/2周长(曲线)(5)半圆的周长:1/2周长+直径(π÷2+1)三、面积计算公式:(1)已知半径:S=πr2(2)已知直径:S=π(d/2)2(3)已知周长:S=π[c÷(2π)]2。
圆的知识单元复习提纲
1、圆:圆是由一条曲线围成的平面图形。
(长方形、梯形等都是由几条线段围成的平面图形)
2、半径:一端在圆心,一端在圆上的线段叫半径。在同一圆里,半径有无数条,条条都相等。
3、直径:通过圆心,两端都在圆上的线段叫直径。在同一圆里,直径有无数条,条条都相等。
在同一圆里,直径长是半径长的2倍。(d=2r, r=d÷2)
4、圆是轴对称图形,有无数条对称轴,对称轴就是直径。
5、圆心决定圆的位置,半径决定圆的大小。
6、正方形里最大的圆。两者联系:边长=直径 (在下面正方形里画一画)
画法:(1)画出正方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
7、长方形里最大的圆。两者联系:宽=直径 (在下面长方形里画一画)
画法:(1)画出长方形的两条对角线;(2)以对角线交点为圆心,以边长为直径画圆。
8、直径是圆里最长的线段,1元硬币的直径是25mm。
9、车轮滚动一周前进的路程就是车轮的周长。 每分前进米数(速度)=车轮的周长*转数
10、C圆÷d = ~ 圆的周长是直径的~倍,~=3.141592653…≈3.14
C圆 = ~d d = C圆÷ ~
C圆÷r = 2~ C圆 = 2~r r= C圆÷ ~÷2
练习:r=4cm,C= C=125.6m,d= d=4.5dm,C= C=1.884m,r=
11、半圆的周长等于圆周长的一半加一条直径。 C半= ~r+2r C半= ~d÷2+ d
练习:d=4.5cm, C半= r=4.5m, C半=
12、半径=边长 通过实验发现:圆的面积是正方形面积的~倍
所以:S圆÷S正=~ S圆=S正*~ S正=S圆÷~
练习:如果正方形的面积是20平方厘米,那么圆的面积呢?
如果圆的面积是7.85平方米,那么正方形的面积呢?
13、
圆的面积推导:圆可以切拼成近似的长方形,长方形的面积=
长方形的长= ,长方形的宽=
因为长方形的面积= ,所以圆的面积=
注意:切拼后的长方形的周长比圆的周长多了两条半径。C长=2~r+2r=C圆+d
练习:如果把一个直径是6厘米的圆切拼成一个长方形,长方形的周长和面积各是多少?
14、半圆的面积是圆面积的一半。S半=~r2÷2
练习:如果半圆的直径是6厘米,求半圆的面积。
15、大小两个圆比较,半径的倍数=直径的倍数=周
1.保龄球的半径大约是1dm,球道的长度约为18m,保龄球从一端滚到另一端,最少要滚动多少周? 2.一个圆形的铁环,直径是40厘米,做这样一个铁环需要用多长的铁条? 3.杂技演员表演独轮车走钢丝.车轮的直径是40cm,要骑过50米长的钢丝,车轮大约转动多少周? 4.小东量得一棵树的树干最粗处的周长是125.6cm,该树干最粗处横截面的面积是多少? 5.把一个圆形纸片剪开后,拼成一个宽等于半径,面积不变的近视长方形,这个长方形的周长是16.56厘米,剪开的圆纸片的面积是多少平方厘米? 6.画一个周长是12.56厘米的圆,圆规两脚尖之间的距离为()厘米,画出的这个圆的面积是()平方厘米 7.把一个长8cm,宽5cm的硬纸板剪成半径为1cm的小圆片,最多能剪多少个小圆片? 8.在田径比赛中,铅球的投掷圈是直径2.1米的圆,铁饼的投掷圈是直径2.5米的圆。
铁饼投掷圈的面积比铅球投掷圈的面积大多少平方米? 9.小华量得一张圆桌面的面积是3.768米。这张圆桌面的面积是多少平方米?(得数保留两位小数) 10.一个半径为4的圆,在圆上任意一点再画一个半径为4的圆,求相交部分的面积。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.600秒