拓扑学是数学中一个重要的、基础的分支。
起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。
在拓扑学的孕育阶段,19世纪末,就拓扑已出现点集拓扑学与组合拓扑学两个方向。现在,前者演化为一般拓扑学,后者则成为代数拓扑学。
后来,又相继出现了微分拓朴学、几何拓扑学等分支。拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。
我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。
通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。
拓扑学是几何学的一个分支,主要研究图形在连续变换下不变的性质。
可参看百科的“拓扑”或“拓扑学”条目。我下面引述的例子不多作解释,可以直接查到。
例如,Euler的七桥问题就是一个拓扑学的问题,因为把七桥连成路径,不论桥和路如何连续的变化,都不影响问题的结果,也就是说,这个问题研究的是一个连续变换下不变的性质。
又如,四色定理(地图可用四色着色)是一个拓扑学的问题,因为地图中的区域大小和具体形状在问题中并不重要,都可以连续的变化,不改变地图可以用四色着色这一性质。
所以,在拓扑学的观点下,圆和三角形的性质没有什么区别,轮胎和戒指的性质没有什么区别,因为它们都可以通过连续变换互相得到。
另一方面,研究图形面积的几何就不是拓扑学,因为在连续变换下,面积可以变化。同样的道理,图形的大小、平行、对称、垂直等等都不是拓扑学的研究领域。
可以看到,拓扑学研究的性质对图形的要求很低(一定程度变了形都没关系),所以它的应用范围也就十分广泛,因而成为现代数学的基础之一。以至于许多看起来跟几何图形没多大关系的地方,也可以应用拓扑学的知识。如分析学中就大量使用点集拓扑学的术语和手段。
拓扑学因研究的领域和方法的不同,有一些分支。如一般拓扑学,又称点集拓扑学,是研究一组抽象的“点”(可以是几何上的,也可以不是)的拓扑性质的;代数拓扑学,利用代数学的手段研究拓扑性质,如同伦论和同调论;微分拓扑学,利用分析学的手段(主要是微分)研究拓扑性质;几何拓扑学,研究几何意义明显的东西(成为流形),如扭结;等等。
注:以上的叙述只是介绍,语言都是在数学上不严谨的。实际的拓扑学研究中,像连续、变换、点等概念,都是需要严格定义的。
拓扑学是数学中一个重要的、基础性的分支。它最初是几何学的一个分支,主要研究几何图形在连续变形下保持不变的性质,现在已成为研究连续性现象的重要的数学分支。
拓扑学起初叫形势分析学,是莱布尼茨1679年提出的名词。十九世纪中期,黎曼在复函数的研究中强调研究函数和积分就必须研究形势分析学。从此开始了现代拓扑学的系统研究。
连续性和离散性是自然界与社会现象中普遍存在的。拓扑学对连续性数学是带有根本意义的,对于离散性数学也起着巨大的推动作用。拓扑学的基本内容已经成为现代数学的常识。拓扑学的概念和方法在物理学、生物学、化学等学科中都有直接、广泛的应用。
拓扑学是几何学的一个分支,主要研究图形在连续变换下不变的性质。
可参看百科的“拓扑”或“拓扑学”条目。我下面引述的例子不多作解释,可以直接查到。
例如,Euler的七桥问题就是一个拓扑学的问题,因为把七桥连成路径,不论桥和路如何连续的变化,都不影响问题的结果,也就是说,这个问题研究的是一个连续变换下不变的性质。又如,四色定理(地图可用四色着色)是一个拓扑学的问题,因为地图中的区域大小和具体形状在问题中并不重要,都可以连续的变化,不改变地图可以用四色着色这一性质。
所以,在拓扑学的观点下,圆和三角形的性质没有什么区别,轮胎和戒指的性质没有什么区别,因为它们都可以通过连续变换互相得到。另一方面,研究图形面积的几何就不是拓扑学,因为在连续变换下,面积可以变化。
同样的道理,图形的大小、平行、对称、垂直等等都不是拓扑学的研究领域。可以看到,拓扑学研究的性质对图形的要求很低(一定程度变了形都没关系),所以它的应用范围也就十分广泛,因而成为现代数学的基础之一。
以至于许多看起来跟几何图形没多大关系的地方,也可以应用拓扑学的知识。如分析学中就大量使用点集拓扑学的术语和手段。
拓扑学因研究的领域和方法的不同,有一些分支。如一般拓扑学,又称点集拓扑学,是研究一组抽象的“点”(可以是几何上的,也可以不是)的拓扑性质的;代数拓扑学,利用代数学的手段研究拓扑性质,如同伦论和同调论;微分拓扑学,利用分析学的手段(主要是微分)研究拓扑性质;几何拓扑学,研究几何意义明显的东西(成为流形),如扭结;等等。
注:以上的叙述只是介绍,语言都是在数学上不严谨的。实际的拓扑学研究中,像连续、变换、点等概念,都是需要严格定义的。
拓扑学拓扑学,是近代发展起来的一个研究连续性现象的数学分支。
中文名称起源于希腊语Τοπολογ的音译。Topology原意为地貌,于19世纪中期由科学家引入,当时主要研究的是出于数学分析的需要而产生的一些几何问题。
发展至今,拓扑学主要研究拓扑空间在拓扑变换下的不变性质和不变量。 拓扑学是数学中一个重要的、基础的分支。
起初它是几何学的一支,研究几何图形在连续变形下保持不变的性质(所谓连续变形,形象地说就是允许伸缩和扭曲等变形,但不许割断和粘合);现在已发展成为研究连续性现象的数学分支。学科方向 由于连续性在数学中的表现方式与研究方法的多样性,拓扑学又分成研究对象与方法各异的若干分支。
19世纪末,在拓扑学的孕育阶段,就已出现点集拓扑学与组合拓扑学两个方向。现在,前者演化为一般拓扑学,后者则成为代数拓扑学。
后来,又相继出现了微分拓朴学、几何拓扑学等分支。 拓扑学也是数学的一个分支,研究几何图形在连续改变形状时还能保持不变的一些特性,它只考虑物体间的位置关系而不考虑它们的距离和大小。
[英topology] 举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。
在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,下面将要讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。
这些就是拓扑学思考问题的出发点。 简单地说,拓扑就是研究有形的物体在连续变换下,怎样还能保持性质不变。
编辑本段拓扑学的由来 几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。
那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。 在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。
哥尼斯堡七桥问题哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。
人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个看起来很简单又很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。
看来要得到一个明确、理想的答案还不那么容易。 1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。
欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。
经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。
这是拓扑学的“先声”。 在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。
这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。 根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。
它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。 著名的“四色问题”也是与拓扑学发展有关的问题。
四色问题又称四色猜想,是世界近代三大数学难题之一。中国曾邦哲于20世纪80-90年代(结构论)将其命题转换为“四色定理”等价于“互邻面最大的多面体是四面体”的问题。
拓扑学四色猜想的提出来自于英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”
1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。
1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。
不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。
进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。
1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.233秒