概率论与数理统计复习提纲 一,事件的运算 如果A,B,C为三事件,则A+B+C为至少一次发生, ABC为同时发生,AB+BC+AC为至少两次发生, 为恰有两次发生.为恰有一次发生, 等等, 要善于将语言翻译成事件运算公式以及将公式翻译成语言..如果A,B为对立事件, 则 , 因此 ,二, 加法法则 如A与B互不相容, 则P(A+B)=P(A)+P(B) 而对于任给的A与B有 P(A+B)=P(A)+P(B)-P(AB) (1) 因此, P(A+B),P(A),P(B),P(AB)这四个概率只要知道三个,剩下一个就能够求出来.因 将B分解为AB与 两个互不相容事件,则 (2) 将这两个式子分别代入到(1)式, 可以得 因此P(A+B),P(A)及 这三个概率只要知道两个, 剩下那个就能求出来, 同样, P(A+B),P(B)及 只要知道两个,剩下那个就能求出来.例如, 在已知P(A+B),A与B只有一件发生的概率为 由(2)式可知 因此A与B只有一件发生的概率为 三, 全概率公式和贝叶斯公式 设A1,A2,…,构成完备事件组, 则任给事件B有 (全概率公式),及 (贝叶斯公式) 其中, 最常用的完备事件组, 就是一个事件A与它的逆 , 即任给事件A,B有 通常是将试验想象为分为两步做, 第一步的结果将导致A或者 之一发生, 而这将影响到第二步的结果的事件B是否发生的概率. 如果是已知第一步的各事件概率及第一步各事件发生条件下第二步事件B发生的概率, 并要求B发生的概率, 就用全概率公式. 而如果是要求在第二步事件B已经发生条件下第一步各事件的概率, 就用贝叶斯公式.四, 随机变量及分布 1. 离散型随机变量 一元: P(ξ=xk)=pk (k=1,2,…),二元: P{ξ=xk, η=yj)=pij (i,j=1,2,…) 边缘分布与联合分布的关系:要注意二元随机变量的函数的计算中, 要合并计算后的值有重合的情况.2. 连续型随机变量, , 性质:分布函数为 , 且有 如ξ~φ(x), η=f(ξ), 则求η的概率密度函数的办法, 是先求η的分布函数Fη(x),,然后对Fη(x)求导即得η的概率密度函数.五, 随机变量的数字特征 数学期望: 离散型: 连续型: 方差: 离散型: 先计算 , 则 连续型: 先计算 则 六, 几种常用的分布 二项分布 ξ~B(n,p)是指 . 它描述了贝努里独立试验概型中, 事件A发生k次的概率. 试验可以同时进行, 也可以依次进行. 均匀分布 ξ服从[a,b]上的均匀分布, 是指 如ξ服从[0,1]上的均匀分布, η=kξ+c, 则η服从[c, k+c]上的均匀分布.七, 无偏估计 对参数 的估计 是无偏估计, 是指 , 一般来讲, 是Eξ的无偏估计, 而S2是Dξ的无偏估计. 但是, 在 是 的无偏估计时, 不能肯定f( )是f( )的无偏估计, 须另作分析.八, 最大似然估计 对于n个样本值x1,x2,…,xn 如总体ξ为连续型随机变量, ξ~φ(x;θ), 则似然函数 而如总体ξ为离散型随机变量, P(ξ=xi)=p(xi;θ), 则似然函数 则解似然方程 解得θ的最大似然估计值 九, 区间估计 在正态总体下, 即总体ξ~N(μ,σ2)时,如果σ2为已知, 则 , 则在给定检验水平α时, 查正态分布表求uα使 , 则置信度为1-α的置信区间为 如果σ2为未知, 则 , 其中S为样本方差的开平方(或者说测得的标准差. 查t-分布表求tα使 , 则置信度为1-α的置信区间为 .十, 假设检验 在正态总体下,即总体ξ~N(μ,σ2)时, 在σ2为已知条件下, 检验假设H0: μ=μ0, 选取统计量 , 则在H0成立的条件下U~N(0,1), 对于给定的检验水平α, 查正态分布表确定临界值uα, 使 , 根据样本观察值计算统计量U的值u与uα比较, 如|u|>uα则否定H0, 否则接收H0. 如σ2为未知, 则选取统计量 , 在H0假设成立时T~t(n-1), 对于给定的检验水平α和样本容量n, 查t-分布表确定临界值tα使P(|T|>tα)=α, 根据样本观察值计算统计量T的值t与tα比较, 如|t|>tα则否定H0, 否则接收H0. 如果是大样本情况下,t-分布接近标准正态分布,因此又可以查正态分布表。
这时,认为样式本方差可以作为精确的方差使用。需要重点练习的习题和例题:p5: 例2. p6: 例3. p226: 1,2. p27: 20. p59: 36,37. p99: 1. p28: 27,28,30. p56: 16,19. p57: 22,23. p59: 33,34. p76: 14,15. p164: 2,4. p165: 8,11. p184: 1,2. p235: 58,60.。
概率统计重点难点
第一章 随机事件和概率
重点内容是:事件的关系:包含,相等,互斥,对立,完全事件组,独立;事件的运算:并,交,差;运算规律:交换律,结合律,分配律,对偶律;概率的基本性质及五大公式:加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式;利用独立性进行概率计算,伯努力试验计算。
近几年单独考查本章的考题相对较少,但是大多数考题中将本章的内容作为基础知识来考核。
第二章 随机变量及其分布
本章的主要内容是:随机变量及其分布函数的概念和性质,分布律和概率密度,随机变量的函数的分布,一些常见的分布:0-1分布、二项分布、超几何分布、泊松分布、均匀分布、正态分布、指数分布及它们的应用。而重点要求会计算与随机变量相联系的事件的概率,用泊松分布近似表示二项分布,以及随机变量简单函数的概率分布。
近几年单独考核本章内容不太多,主要考一些常见分布及其应用、随机变量函数的分布。
第三章 二维随机变量及其分布
本章是概率论重点部分之一,尤其是二维随机变量及其分布的概念和性质,边缘分布,边缘密度,条件分布和条件密度,随机变量的独立性及不相关性,一些常见分布:二维均匀分布,二维正态分布,几个随机变量的简单函数的分布。
第四章 随机变量的数字特征
本章内容是:随机变量的数字特征:数学期望、方差、标准差、矩、协方差、相关系数,常见分布的数字特征。而重点是利用数字特征的基本性质计算具体分布的数字特征,根据一维和二维随机变量的概率分布求其函数的数学期望
第五章 大数定律和中心极限定理
本章内容包括三个大数定律:切比雪夫定律、伯努利大数定律、辛钦大数定律,以及两个中心极限定理:棣莫弗——拉普拉斯定理、列维——林德伯格定理。
本章的内容不是重点,也不经常考,只要把这些定律、定理的条件与结论记住就可以了。
常见题型有
1.估计概率的值
2.与中心极限定理相关的命题
第六章 数理统计的基本概念
数理统计的基本概念主要是总体、简单随机样本、统计量、样本均值、样本方差及样本矩。重点是正态总体的抽样分布,包括样本均值、样本方差、样本矩、两个样本的均值差、两个样本方差比的抽样分布。这会涉及标准正态分布、分布、分布和 分布,要掌握这些分布对应随机变量的典型模式及它们参数的确定,这些分布的分位数和相应的数值表。
本章是数理统计的基础,也是重点之一。
1.样本容量的计算
2.分位数的求解或判定
4.总体或统计量的分布函数的求解或判定或证明
5.求总体或统计量的数字特征
第七章 参数估计
本章的主要内容是参数的点估计、估计量与估计值的概念、一阶或二阶矩估计和最大似然估计法、未知参数的置信区间、单个正态总体均值和方差的置信区间、两个总体的均值差和方差比的置信区间。而重点是矩估计法和最大似然估计法,有时要求验证所得估计量的无偏性。
常见题型有
1.统计量的无偏性、一致性或有效性
2.参数的矩估计量或矩估计值或估计量的数字特征
3.参数的最大似然估量或估计量或估计量的数字特征
4.求单个正态总体均值的置信区间
统计学如今是与数学平行的一级学科,那么统计学要掌握哪些知识点呢?让我这个统计学专业的大四老学长告诉你楼主自己的学习经验吧!统计学听上去是与数据打交道,实际上大部分的统计方向也确实如此。
所以要与数据打交道我们首先要有扎实的数学基础,那么想打好数学基础,楼主推荐大家要掌握好数学分析与高等代数的知识!推荐华东师范大学的《数学分析》与北京大学的《高等代数》。打好了基础,接下来我们就要正式步入统计学的殿堂!茆诗松老师的《概率论与数理统计》是非常经典的统计学基础教材,很多高校也都使用这本书作为统计学教材。
如果你能熟练掌握这本教材上的知识点,那么你就打下了非常扎实的统计学的基础,这对你以后继续统计学方向的研究绝对是一大助力!所以非常有必要仔细认真的学习这本书,把这本书读熟读透你以后的统计学路途会顺利很多。这本书也有对应的课后答案详解,对学习这本书有很大的帮助!再进一步的学习统计学知识,我们就会来到统计学方向的分水岭。
这时候就需要看你的兴趣方向何在了。这以后统计就可被划分为理论统计与应用统计。
比如,应用统计就可分为金融统计,生物统计等等!所以接下来的知识点就看你的方向来决定往哪边倾向了!最后,统计学方向掌握程序软件也是必不可少的一项。在经济统计方向,大部分用的是SPSS。
而在偏数学的统计上大部分用的是R语言或者是Python。所以熟练掌握一门程序语言也是必不可少的一项统计学知识,而要想熟练掌握,只有自己平常多学多做多练才能达到要求!以上就是楼主的建议,如果觉得好的话欢迎采纳。
去百度文库,查看完整内容>内容来自用户:唐唐唐田旭第1章随机事件及其概率(1)排列组合公式| 从m个人中挑出n个人进行排列的可能数| 从m个人中挑出n个人进行组合的可能数|(2)加法和乘法原理|加法原理(两种方法均能完成此事):m+n|某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。
|乘法原理(两个步骤分别不能完成这件事):m*n|某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m*n 种方法来完成。|(3)一些常见排列|重复排列和非重复排列(有序)|对立事件(至少有一个)|顺序问题|(4)随机试验和随机事件|如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
|试验的可能结果称为随机事件。|(5)基本事件、样本空间和事件|在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质:|①每进行一次试验,必须发生且只能发生这一组中的一个事件;|②任何事件,都是由这一组中的部分事件组成的。
|这样一组事件中的每一个事件称为基本事件,用来表示。|基本事件的全体,称为试验的样本空间,用表示。
|一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,…表示事件,它们是的子集。
|为必然事件,Ø为不可能事件。|不可能事件。
参考教材:浙大第四版概率论与数理统计
第一章
1、交换律、结合律、分配率、的摩根律;(解题的基础)
2、古典概型——有限等可能、几何模型——无限等可能;
3、抽签原理——跟先后顺序无关;
4、小概率原理——小概率事件在一次试验不可能发生,一旦发生就怀疑实现规律的正确性;
5、条件概率:注意当条件的概率必须大于0;
6、全概:原因>结果 贝叶斯:结果>原因;
7、相容通过事件定义,独立通过概率定义。
第二章
1、0——1分布,二项分布,泊松分布X的取值都是从0开始;
2、分布函数是右连续的,在求分布函数也尽量写成右连续的;
3、分布函数的性质、概率密度的性质;
4、连续性随机变量任一指定值的概率为0;
5、概率为0不一定是不可能事件,概率为1不一定是必然事件;
6、正态分布的图形性质;
7、求函数的分布尽量按定义法,按定义写出基本公式;
8、分段单调时应该分段使用公式再相加。
第三章(这章比较容易出错)
1、二维分布函数的性质;(不减函数而不是单增函数;右连续)
2、求分布函数一定要按定义来,注意画对图形;
3、求边缘分布的时候,注意不同变量的区间用在什么地方;求X的边缘分布的话,先对X的区间进行划分,再不同的区间对Y的全部区间进行积分(Y在不同的区间可能有不同的函数表达)
4、负无穷到正无穷的E的负的二分之T平方的积分;(浙三P83)
5、算条件概率也一样,注意相应的区间;(这种题细节丢分太可惜)
6、max(x,y)与min(x,y)相互独立的情况是什么?独立同分布又是什么?
7、边缘分布一般不能确定分布的,只有当变量相互独立才可以。
第四章
1、级数绝对收敛,期望才存在;
2、期望的和等于和的期望,xy之间不要求任何关系;期望的乘积等于乘积的期望,xy要相互独立;
3、浙三P120:分解的思想,还有P126;
4、方差的和在独立和不独立时公式不一样;
5、独立推出不相关;不相关推不出独立;不相关只是线性不相关;题目中如果xy的关系能够表示出来的话(一般)都是不独立;
6、二维正态分布、独立不相关等价;
7、提示:求一些积分的时候有时候可以用到对称性;
8、数一400题P140那个评注上面T(4)=3!(会用,那么做题会很方便)
第五章
1、切比雪夫大数定律条件:相互独立、方差存在一致有上界;
2、辛钦大数定律条件:独立同分布、期望存在;
3、二项分布、泊松定理、拉普拉斯大数定理结合着看一下。
第六章
1、样本的变量独立同分布;
2、统计量不含未知参数;
3、X2分布的期望和方差看下去年真题最后一道;
4、t分布图形对称性a的那个对称性公式看下;
5、三个分布的形式一定要掌握;
6、P168对后面检验和估计很有帮助。
第七章
1、矩估计就是x的1、2次方的期望;
2、最大似然估计!有可能最大似然估计的两种方法结合在一起;(开下思路)
3、区间估计;(如果能好好看书的话不难懂,不然就把P205复印下没事看两眼)
第八章
1、拒绝域与备择假设的符号相同P229
2.P436期望和方差;
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:4.062秒