数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。例如:滤波、检测、变换、增强、估计、识别、参数提取、频谱分析等。
一般地讲,数字信号处理涉及三个步骤:
⑴模数转换(A/D转换):把模拟信号变成数字信号,是一个对自变量和幅值同时进行离散化的过程,基本的理论保证是采样定理。
⑵数字信号处理(DSP):包括变换域分析(如频域变换)、数字滤波、识别、合成等。
⑶数模转换(D/A转换):把经过处理的数字信号还原为模拟信号。通常,这一步并不是必须的。 作为DSP的成功例子有很多,如医用CT断层成像扫描仪的发明。它是利用生物体的各个部位对X射线吸收率不同的现象,并利用各个方向扫描的投影数据再构造出检测体剖面图的仪器。这种仪器中fft(快速傅里叶变换)起到了快速计算的作用。以后相继研制出的还有:采用正电子的CT机和基于核磁共振的CT机等仪器,它们为医学领域作出了很大的贡献。
信号处理的目的是:削弱信号中的多余内容;滤出混杂的噪声和干扰;或者将信号变换成容易处理、传输、分析与识别的形式,以便后续的其它处理。
图像的经典特征提取方法:
1 HOG(histogram of Oriented Gradient,方向梯度直方图)
2 SIFT(Scale-invariant features transform,尺度不变特征变换)
3 SURF(Speeded Up Robust Features,加速稳健特征,对sift的改进)
4 DOG(Difference of Gaussian,高斯函数差分)
5 LBP(Local Binary Pattern,局部二值模式)
6 HAAR(haar-like ,haar类特征,注意haar是个人名,haar这个人提出了一个用作滤波器的小波,为这个滤波器命名为haar滤波器,后来有人把这个滤波器用到了图像上,就是图像的haar特征)
图像的一般提取特征方法:
1 灰度直方图,颜色直方图
2 均值,方差
3 信号处理类的方法:灰度共生矩阵,Tamura纹理特征,自回归纹理特征,小波变换。
4 傅里叶形状描述符,小波描述符等,
主要有:地物边界跟踪法;形状特征描述与提取;地物空间关系特征描述与提取。
遥感图像解译,除了利用地物的光谱特征外,还需利用地物的形状特征和空间关系特征,因此需要提取图像的其他特征。
对于高分辨率遥感图像,可以清楚地观察到丰富的结构信息,如城市是由许多街区组成的,每个街区又由多个巨星楼房构成,其中人造地物具有明显的形状和结构特征,如建筑物、厂房、农田田埂,因此可以设法去提取这类地物的形状特征及其空间关系特征,以作为结构模式识别的依据
(1)提取简单,时间和空间复杂度低。
(2)区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反
之,对于视觉内容不相似的图像其特征描述之间应有一定的差别。
(3)与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相
近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别。
(4)抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,
旋转不变性。
**************************************************************
如果你对这个答案有什么疑问,请追问,
另外如果你觉得我的回答对你有所帮助,请千万别忘记采纳哟!
**************************************************************
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:1.894秒