加密方式的种类:
1、MD5
一种被广泛使用的密码散列函数,可以产生出一个128位(16字节)的散列值(hash value),用于确保信息传输完整一致。MD5由美国密码学家罗纳德·李维斯特(Ronald Linn Rivest)设计,于1992年公开,用以取代MD4算法。这套算法的程序在 RFC 1321 标准中被加以规范。
2、对称加密
对称加密采用单钥密码系统的加密方法,同一个密钥可以同时用作信息的加密和解密,这种加密方法称为对称加密,也称为单密钥加密。
3、非对称加密
与对称加密算法不同,非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey)。公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密。
如果用私有密钥对数据进行加密,那么只有用对应的公开密钥才能解密。因为加密和解密使用的是两个不同的密钥,所以这种算法叫作非对称加密算法。
扩展资料
非对称加密工作过程
1、乙方生成一对密钥(公钥和私钥)并将公钥向其它方公开。
2、得到该公钥的甲方使用该密钥对机密信息进行加密后再发送给乙方。
3、乙方再用自己保存的另一把专用密钥(私钥)对加密后的信息进行解密。乙方只能用其专用密钥(私钥)解密由对应的公钥加密后的信息。
在传输过程中,即使攻击者截获了传输的密文,并得到了乙的公钥,也无法破解密文,因为只有乙的私钥才能解密密文。
同样,如果乙要回复加密信息给甲,那么需要甲先公布甲的公钥给乙用于加密,甲自己保存甲的私钥用于解密。
目前常用的加密方法主要有两种,分别为:私有密钥加密和公开密钥加密。私有密钥加密法的特点信息发送方与信息接收方均需采用同样的密钥,具有对称性,也称对称加密。公开密钥加密,又称非对称加密,采用一对密钥,一个是私人密钥,另一个则是公开密钥。
私有密钥加密
私有密钥加密,指在计算机网络上甲、乙两用户之间进行通信时,发送方甲为了保护要传输的明文信息不被第三方窃取,采用密钥A对信息进行加密而形成密文M并发送给接收方乙,接收方乙用同样的一把密钥A对收到的密文M进行解密,得到明文信息,从而完成密文通信目的的方法。
这种信息加密传输方式,就称为私有密钥加密法。
私有密钥加密的特点:
私有密钥加密法的一个最大特点是:信息发送方与信息接收方均需采用同样的密钥,具有对称性,所以私有密钥加密又称为对称密钥加密。
私有密钥加密原理:
私有加密算法使用单个私钥来加密和解密数据。由于具有密钥的任意一方都可以使用该密钥解密数据,因此必须保证密钥未被授权的代理得到。
公开密钥加密
公开密钥加密(public-key cryptography),也称为非对称加密(asymmetric cryptography),一种密码学算法类型,在这种密码学方法中,需要一对密钥,一个是私人密钥,另一个则是公开密钥。
这两个密钥是数学相关,用某用户密钥加密后所得的信息,只能用该用户的解密密钥才能解密。如果知道了其中一个,并不能计算出另外一个。因此如果公开了一对密钥中的一个,并不会危害到另外一个的秘密性质。称公开的密钥为公钥;不公开的密钥为私钥。
主要有两种方式:“对称式”和“非对称式”。
对称式加密就是加密和解密使用同一个密钥,通常称之为“Session Key ”这种加密技术目前被广泛采用,如美国政府所采用的DES加密标准就是一种典型的“对称式”加密法,它的Session Key长度为56Bits。 非对称式加密就是加密和解密所使用的不是同一个密钥,通常有两个密钥,称为“公钥”和“私钥”,它们两个必需配对使用,否则不能打开加密文件。
这里的“公钥”是指可以对外公布的,“私钥”则不能,只能由持有人一个人知道。它的优越性就在这里,因为对称式的加密方法如果是在网络上传输加密文件就很难把密钥告诉对方,不管用什么方法都有可能被别窃听到。
而非对称式的加密方法有两个密钥,且其中的“公钥”是可以公开的,也就不怕别人知道,收件人解密时只要用自己的私钥即可以,这样就很好地避免了密钥的传输安全性问题。 一般的数据加密可以在通信的三个层次来实现:链路加密、节点加密和端到端加密。
(3) 链路加密 对于在两个网络节点间的某一次通信链路,链路加密能为网上传输的数据提供安全证。对于链路加密(又称在线加密),所有消息在被传输之前进行加密,在每一个节点对接收到消息进行解密,然后先使用下一个链路的密钥对消息进行加密,再进行传输。
在到达目的地之前,一条消息可能要经过许多通信链路的传输。 由于在每一个中间传输节点消息均被解密后重新进行加密,因此,包括路由信息在内的链路上的所有数据均以密文形式出现。
这样,链路加密就掩盖了被传输消息的源点与终点。由于填充技术的使用以及填充字符在不需要传输数据的情况下就可以进行加密,这使得消息的频率和长度特性得以掩盖,从而可以防止对通信业务进行分析。
尽管链路加密在计算机网络环境中使用得相当普遍,但它并非没有问题。链路加密通常用在点对点的同步或异步线路上,它要求先对在链路两端的加密设备进行同步,然后使用一种链模式对链路上传输的数据进行加密。
这就给网络的性能和可管理性带来了副作用。 在线路/信号经常不通的海外或卫星网络中,链路上的加密设备需要频繁地进行同步,带来的后果是数据丢失或重传。
另一方面,即使仅一小部分数据需要进行加密,也会使得所有传输数据被加密。 在一个网络节点,链路加密仅在通信链路上提供安全性,消息以明文形式存在,因此所有节点在物理上必须是安全的,否则就会泄漏明文内容。
然而保证每一个节点的安全性需要较高的费用,为每一个节点提供加密硬件设备和一个安全的物理环境所需要的费用由以下几部分组成:保护节点物理安全的雇员开销,为确保安全策略和程序的正确执行而进行审计时的费用,以及为防止安全性被破坏时带来损失而参加保险的费用。 在传统的加密算法中,用于解密消息的密钥与用于加密的密钥是相同的,该密钥必须被秘密保存,并按一定规则进行变化。
这样,密钥分配在链路加密系统中就成了一个问题,因为每一个节点必须存储与其相连接的所有链路的加密密钥,这就需要对密钥进行物理传送或者建立专用网络设施。而网络节点地理分布的广阔性使得这一过程变得复杂,同时增加了密钥连续分配时的费用。
节点加密 尽管节点加密能给网络数据提供较高的安全性,但它在操作方式上与链路加密是类似的:两者均在通信链路上为传输的消息提供安全性;都在中间节点先对消息进行解密,然后进行加密。因为要对所有传输的数据进行加密,所以加密过程对用户是透明的。
然而,与链路加密不同,节点加密不允许消息在网络节点以明文形式存在,它先把收到的消息进行解密,然后采用另一个不同的密钥进行加密,这一过程是在节点上的一个安全模块中进行。 节点加密要求报头和路由信息以明文形式传输,以便中间节点能得到如何处理消息的信息。
因此这种方法对于防止攻击者分析通信业务是脆弱的。 端到端加密 端到端加密允许数据在从源点到终点的传输过程中始终以密文形式存在。
采用端到端加密,消息在被传输时到达终点之前不进行解密,因为消息在整个传输过程中均受到保护,所以即使有节点被损坏也不会使消息泄露。 端到端加密系统的价格便宜些,并且与链路加密和节点加密相比更可靠,更容易设计、实现和维护。
端到端加密还避免了其它加密系统所固有的同步问题,因为每个报文包均是独立被加密的,所以一个报文包所发生的传输错误不会影响后续的报文包。此外,从用户对安全需求的直觉上讲,端到端加密更自然些。
单个用户可能会选用这种加密方法,以便不影响网络上的其他用户,此方法只需要源和目的节点是保密的即可。 端到端加密系统通常不允许对消息的目的地址进行加密,这是因为每一个消息所经过的节点都要用此地址来确定如何传输消息。
由于这种加密方法不能掩盖被传输消息的源点与终点,因此它对于防止攻击者分析通信业务是脆弱的。
一般企业用的话,以透明加密方式为主,加密和解密都自动完成,只需要提前设置好加密模式和加密算法就行,用户其实不需要去了解加密的具体过程和算法,当然,算法的复杂性需要了解一下
IP-guard的文档加密系统就是采用了透明加密算法,能够为企业各类电子文档提供高强度的加密管理,机密文档在授权终端上始终以加密形式保存,文档打开时自动解密,保存时自动加密,不影响用户使用习惯。
用户在使用被IP-guard加密的文件过程中,无法通过复制、剪切、截屏、打印等方式泄露被加密的文件内容。
如果加密电脑本机的数据可以使用文件夹加密超级大师进行加密,文件夹加密超级大师加密文件夹一共有五种加密方法,
闪电加密速度快,对文件夹没有大小限制,无论多大都可以在几秒内加密完毕。
隐藏加密后,数据被彻底隐藏,只能通过软件打开或解密。
金钻加密是把文件夹加密成一个加密文件, 打开或解密时需要输入密码。特点是安全性极高,没有正确密码任何人无法打开或解密。适用于比较小一点的重要文件存放的文件夹。
全面加密是把文件夹里面的所有文件加密成加密文件, 打开文件夹不需要密码,但是打开里面的每个文件都需要密码。
移动加密是把数据加密成exe文件,可以移动到其他没有安装软件的电脑上解密,也可以通过网络传输。
采用密码技术对信息加密,是最常用的安全交易手段。
在电子商务中获得广泛应用的加密技术有以下两种: (1)公共密钥和私用密钥(public key and private key) 这一加密方法亦称为RSA编码法,是由Rivest、Shamir和Adlernan三人所研究发明的。它利用两个很大的质数相乘所产生的乘积来加密。
这两个质数无论哪一个先与原文件编码相乘,对文件加密,均可由另一个质数再相乘来解密。但要用一个质数来求出另一个质数,则是十分困难的。
因此将这一对质数称为密钥对(Key Pair)。在加密应用时,某个用户总是将一个密钥公开,让需发信的人员将信息用其公共密钥加密后发给该用户,而一旦信息加密后,只有用该用户一个人知道的私用密钥才能解密。
具有数字凭证身份的人员的公共密钥可在网上查到,亦可在请对方发信息时主动将公共密钥传给对方,这样保证在Internet上传输信息的保密和安全。 (2)数字摘要(digital digest) 这一加密方法亦称安全Hash编码法(SHA:Secure Hash Algorithm)或MD5(MD Standards for Message Digest),由Ron Rivest所设计。
该编码法采用单向Hash函数将需加密的明文“摘要”成一串128bit的密文,这一串密文亦称为数字指纹(Finger Print),它有固定的长度,且不同的明文摘要成密文,其结果总是不同的,而同样的明文其摘要必定一致。这样这摘要便可成为验证明文是否是“真身”的“指纹”了。
上述两种方法可结合起来使用,数字签名就是上述两法结合使用的实例。 3.2数字签名(digital signature) 在书面文件上签名是确认文件的一种手段,签名的作用有两点,一是因为自己的签名难以否认,从而确认了文件已签署这一事实;二是因为签名不易仿冒,从而确定了文件是真的这一事实。
数字签名与书面文件签名有相同之处,采用数字签名,也能确认以下两点: a. 信息是由签名者发送的。 b. 信息在传输过程中未曾作过任何修改。
这样数字签名就可用来防止电子信息因易被修改而有人作伪;或冒用别人名义发送信息;或发出(收到)信件后又加以否认等情况发生。 数字签名采用了双重加密的方法来实现防伪、防赖。
其原理为: (1) 被发送文件用SHA编码加密产生128bit的数字摘要(见上节)。 (2) 发送方用自己的私用密钥对摘要再加密,这就形成了数字签名。
(3) 将原文和加密的摘要同时传给对方。 (4) 对方用发送方的公共密钥对摘要解密,同时对收到的文件用SHA编码加密产生又一摘要。
(5) 将解密后的摘要和收到的文件在接收方重新加密产生的摘要相互对比。如两者一致,则说明传送过程中信息没有被破坏或篡改过。
否则不然。 3.3数字时间戳(digital time-stamp) 交易文件中,时间是十分重要的信息。
在书面合同中,文件签署的日期和签名一样均是十分重要的防止文件被伪造和篡改的关键性内容。 在电子交易中,同样需对交易文件的日期和时间信息采取安全措施,而数字时间戳服务(DTS:digital time-stamp service)就能提供电子文件发表时间的安全保护。
数字时间戳服务(DTS)是网上安全服务项目,由专门的机构提供。时间戳(time-stamp)是一个经加密后形成的凭证文档,它包括三个部分:1)需加时间戳的文件的摘要(digest),2)DTS收到文件的日期和时间,3)DTS的数字签名。
时间戳产生的过程为:用户首先将需要加时间戳的文件用HASH编码加密形成摘要,然后将该摘要发送到DTS,DTS在加入了收到文件摘要的日期和时间信息后再对该文件加密(数字签名),然后送回用户。由Bellcore创造的DTS采用如下的过程:加密时将摘要信息归并到二叉树的数据结构;再将二叉树的根值发表在报纸上,这样更有效地为文件发表时间提供了佐证。
注意,书面签署文件的时间是由签署人自己写上的,而数字时间戳则不然,它是由认证单位DTS来加的,以DTS收到文件的时间为依据。因此,时间戳也可作为科学家的科学发明文献的时间认证。
3.4数字凭证(digital certificate, digital ID) 数字凭证又称为数字证书,是用电子手段来证实一个用户的身份和对网络资源的访问的权限。在网上的电子交易中,如双方出示了各自的数字凭证,并用它来进行交易操作,那么双方都可不必为对方身份的真伪担心。
数字凭证可用于电子邮件、电子商务、群件、电子基金转移等各种用途。 数字凭证的内部格式是由CCITT X.509国际标准所规定的,它包含了以下几点: (1) 凭证拥有者的姓名, (2) 凭证拥有者的公共密钥, (3) 公共密钥的有效期, (4) 颁发数字凭证的单位, (5) 数字凭证的序列号(Serial number), (6) 颁发数字凭证单位的数字签名。
数字凭证有三种类型: (1) 个人凭证(Personal Digital ID):它仅仅为某一个用户提供凭证,以帮助其个人在网上进行安全交易操作。个人身份的数字凭证通常是安装在客户端的浏览器内的。
并通过安全的电子邮件(S/MIME)来进行交易操作。 (2) 企业(服务器)凭证(Server ID):它通常为网上的某个Web服务器提供凭证,拥有Web服务器的企业就可以用具有凭证的万维网站点(Web Site)来进行安全电子交易。
有凭证的Web服务器会自动地将其与客户端Web浏览器通信的。
一、WEP安全加密方式
WEP的全称是:802.11 Wired Equivalent Privacy,它是无线网络第一个安全协议,WEP特性里使用了一种称为rc4 prng的算法。所有客户端和无线接入点都会以一个共享的密钥进行加密,密钥越长,就越安全。
WEP的缺点是:使用的是静态的密钥非动态密钥,很容易被黑客破解。
二、WPA安全加密方式
WPA的全称是:Wi-Fi Protected Access,作为WEP的升级版,在安全性上有了很大的改进,主要体现在身份认证、加密机制和数据包检查等方面。
WPA的优点是:使用了动态的密钥。缺点是:完整的WPA设置是比较复杂的,由于操作过程比较困难(微软针对这些设置过程还专门开设了一门认证课程),一般用户很难设置。
也称棋盘密码,是利用波利比奥斯方阵(Polybius Square)进行加密的密码方式,产生于公元前两世纪的希腊,相传是世界上最早的一种密码。
假设我们需要发送明文讯息 “Attack at once”, 用一套秘密混杂的字母表填满波利比奥斯方阵,像是这样: A D F G X A b t a l p D d h o z k F q f v s n G g j c u x X m r e w y i和j视为同一个字,使字母数量符合 5 * 5 格。之所以选择这五个字母,是因为它们译成摩斯密码时不容易混淆,可以降低传输错误的机率。
使用这个方格,找出明文字母在这个方格的位置,再以那个字母所在的栏名称和列名称代替这个字母。可将该讯息转换成处理过的分解形式。
明文:A T T A C K A T O N C E 密文:AF AD AD AF GF DX AF AD DF FX GF XF A,D,F,G,X也可以用数字1,2,3,4,5来代替,这样密文就成了: 13 12 12 13 43 25 13 12 23 35 43 53。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.619秒