散点曲面重构是计算机图形学中的一个基本问题,针对这个问题提出了一种全新的基于核回归方法的散点曲面重构方法,使用二维信号处理方法中非参数滤波等成熟手段进行曲面重构。
这种方法可以生成任意阶数连续的曲面,在理论上保证了生成曲面的连续性,可以自定义网格的拓扑,在曲率大或者感兴趣的局部能够自适应调整网格点的密度,生成的结果方便LOD建模,数据的拟合精度也可以通过调整滤波参数控制,算法自适应调整滤波器的方向,使结果曲面可以更好保持尖锐特征。同时在构造过程中避免了传统的细分曲面方法中迭代、Delaunay剖分和点云数据中重采样等时间开销大的过程,提高了效率。
对于采样不均、噪声较大的数据。该算法的鲁棒性很好。
实验表明这种曲面建模方法能够散点重构出精度较高的连续曲面,在效率上有很大提高,在只需要估计曲面和其一阶导数时,利用Nadaraya-Watson快速算法可以使算法时间复杂度降为O(N),远低于其他曲面重构平滑方法。同时算法可以对曲面的局部点云密度、网格顶点法矢等信息做有效的估计。
重构出的曲面对类似数字高程模型(DEM)的数据可以保证以上的优点。但如果散点数据不能被投影到2维平面上,曲面重构就需要包括基网格生成、重构面片缝合等过程。
缝合边缘的连续性也不能在理论上得到保证。
曲线拟合一般方法包括:1、用解析表达式逼近离散数据;2、最小二乘法。
相关概念:曲线拟合:实际工作中,变量间未必都有线性关系,如服药后血药浓度与时间的关系;疾病疗效与疗程长短的关系;毒物剂量与致死率的关系等常呈曲线关系。曲线拟合(curve fitting)是指选择适当的曲线类型来拟合观测数据,并用拟合的曲线方程分析两变量间的关系。
曲线直线化是曲线拟合的重要手段之一。对于某些非线性的资料可以通过简单的变量变换使之直线化,这样就可以按最小二乘法原理求出变换后变量的直线方程,在实际工作中常利用此直线方程绘制资料的标准工作曲线,同时根据需要可将此直线方程还原为曲线方程,实现对资料的曲线拟合。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.699秒