总的分两种:
1 列表法
将实验数据按一定规律用列表方式表达出来是记录和处理实验数据最常用的方法。表格的设计要求对应关系清楚、简单明了、有利于发现相关量之间的物理关系;此外还要求在标题栏中注明物理量名称、符号、数量级和单位等;根据需要还可以列出除原始数据以外的计算栏目和统计栏目等。最后还要求写明表格名称、主要测量仪器的型号、量程和准确度等级、有关环境条件参数如温度、湿度等。
2 作图法
作图法可以最醒目地表达物理量间的变化关系。从图线上还可以简便求出实验需要的某些结果(如直线的斜率和截距值等),读出没有进行观测的对应点(内插法),或在一定条件下从图线的延伸部分读到测量范围以外的对应点(外推法)。此外,还可以把某些复杂的函数关系,通过一定的变换用直线图表示出来。例如半导体热敏电阻的电阻与温度关系为,取对数后得到,若用半对数坐标纸,以lgR为纵轴,以1/T为横轴画图,则为一条直线。
1. Analytic Visualizations(可视化分析)
不管是对数据分析专家还是普通用户,数据可视化是数据分析工具最基本的要求。可视化可以直观的展示数据,让数据自己说话,让观众听到结果。
2. Data Mining Algorithms(数据挖掘算法)
可视化是给人看的,数据挖掘就是给机器看的。集群、分割、孤立点分析还有其他的算法让我们深入数据内部,挖掘价值。这些算法不仅要处理大数据的量,也要处理大数据的速度。
3. Predictive Analytic Capabilities(预测性分析能力)
数据挖掘可以让分析员更好的理解数据,而预测性分析可以让分析员根据可视化分析和数据挖掘的结果做出一些预测性的判断。
4. Semantic Engines(语义引擎)
由于非结构化数据的多样性带来了数据分析的新的挑战,需要一系列的工具去解析,提取,分析数据。语义引擎需要被设计成能够从“文档”中智能提取信息。
5. Data Quality and Master Data Management(数据质量和数据管理)
数据质量和数据管理是一些管理方面的最佳实践。通过标准化的流程和工具对数据进行处理可以保证一个预先定义好的高质量的分析结果。
大数据技术包括数据收集、数据存取、基础架构、数据处理、统计分析、数据挖掘、模型预测、结果呈现。
1、数据收集:在大数据的生命周期中,数据采集处于第一个环节。根据MapReduce产生数据的应用系统分类,大数据的采集主要有4种来源:管理信息系统、Web信息系统、物理信息系统、科学实验系统。
2、数据存取:大数据的存去采用不同的技术路线,大致可以分为3类。第1类主要面对的是大规模的结构化数据。第2类主要面对的是半结构化和非结构化数据。第3类面对的是结构化和非结构化混合的大数据,
3、基础架构:云存储、分布式文件存储等。
4、数据处理:对于采集到的不同的数据集,可能存在不同的结构和模式,如文件、XML 树、关系表等,表现为数据的异构性。对多个异构的数据集,需要做进一步集成处理或整合处理,将来自不同数据集的数据收集、整理、清洗、转换后,生成到一个新的数据集,为后续查询和分析处理提供统一的数据视图。
5、统计分析:假设检验、显著性检验、差异分析、相关分析、T检验、方差分析、卡方分析、偏相关分析、距离分析、回归分析、简单回归分析、多元回归分析、逐步回归、回归预测与残差分析、岭回归、logistic回归分析、曲线估计、因子分析、聚类分析、主成分分析、因子分析、快速聚类法与聚类法、判别分析、对应分析、多元对应分析(最优尺度分析)、bootstrap技术等等。
6、数据挖掘:目前,还需要改进已有数据挖掘和机器学习技术;开发数据网络挖掘、特异群组挖掘、图挖掘等新型数据挖掘技术;突破基于对象的数据连接、相似性连接等大数据融合技术;突破用户兴趣分析、网络行为分析、情感语义分析等面向领域的大数据挖掘技术。
7、模型预测:预测模型、机器学习、建模仿真。
8、结果呈现:云计算、标签云、关系图等。
目前常用的大数据2113解决方案包括5261以下几类
一、Hadoop。Hadoop 是一个能够对大量数据进行分布式4102处理的软件框架。但是1653 Hadoop 是以一种可靠、高效、可伸缩的方式进行处理的。此外,Hadoop 依赖于社区服务器,因此它的成本比较低,任何人都可以使用。
二、HPCC。HPCC,High Performance Computing and Communications(高性能计算与通信)的缩写。HPCC主要目标要达到:开发可扩展的计算系统及相关软件,以支持太位级网络传输性能,开发千兆 比特网络技术,扩展研究和教育机构及网络连接能力。
三、Storm。Storm是自由的开源软件,一个分布式的、容错的实时计算系统。Storm可以非常可靠的处理庞大的数据流,用于处理Hadoop的批量数据。 Storm支持许多种编程语言,使用起来非常有趣。Storm由Twitter开源而来
四、Apache Drill。为了帮助企业用户寻找更为有效、加快Hadoop数据查询的方法,Apache软件基金会近日发起了一项名为“Drill”的开源项目。该项目帮助谷歌实现海量数据集的分析处理,包括分析抓取Web文档、跟踪安装在Android Market上的应用程序数据、分析垃圾邮件、分析谷歌分布式构建系统上的测试结果等等。
与传统的bai在线联机分析处理OLAP不同,对大数据的深度分析主要基于大规模的机器学习技术,一般而du言,机器学习模型的训练过程可以归结为最优化定义于大规模zhi训练数据上的目标函数并且通过一个循环迭代的算法实现dao。
1、编程语言:Python/R
2、版数据库权MySQL、MongoDB、Redis等
3、数据分析工具讲解、数值计算包、Pandas与数据库。 等
4、进阶:Matplotlib、时间序列分析/算法、机器学习。 等
1:需求:数据的输入和数据的产出;
2:数据量、处理效率、可靠性、可维护性、简洁性;
3:数据建模;
4:架构设计:数据怎么进来,输出怎么展示,最最重要的是处理流出数据的架构;
5:再次思考大数据系统和企业IT系统的交互;
6:最终确定选择、规范等;
7:基于数据建模写基础服务代码;
8:正式编写第一个模块;
9:实现其它的模块,并完成测试和调试等;
10:测试和验收
1Apache Hive
Hive是一个建立在Hadoop上的开源数据仓库基础设施,通过Hive可以很容易的进行数据的ETL,对数据进行结构化处理,并对Hadoop上大数据文件进行查询和处理等。 Hive提供了一种简单的类似SQL的查询语言—HiveQL,这为熟悉SQL语言的用户查询数据提供了方便。
2. Apache Spark
Apache Spark是Hadoop开源生态系统的新成员。它提供了一个比Hive更快的查询引擎,因为它依赖于自己的数据处理框架而不是依靠Hadoop的HDFS服务。同时,它还用于事件流处理、实时查询和机器学习等方面。
3. Jaspersoft BI 套件
Jaspersoft包是一个通过数据库列生成报表的开源软件。行业领导者发现Jaspersoft软件是一流的, 许多企业已经使用它来将SQL表转化为pdf,,这使每个人都可以在会议上对其进行审议。另外,JasperReports提供了一个连接配置单元来替代HBase。
4. Keen IO
Keen IO是个强大的移动应用分析工具。开发者只需要简单到一行代码, 就可以跟踪他们想要的关于他们应用的任何信息。开发者接下来只需要做一些Dashboard或者查询的工作就可以了。
5. Mortar Data
Mortar Data是专为开发者打造的Hadoop开发平台,它用Pig和Python的组合替代了MapReduce以便开发者能简单地编写Hadoop管道(Pipeline)。
6. Placed Analytics
利用脚本语言以及API, PlacedAnalytics能够提供针对移动和网络应用的详细用户行为分析。包括, 用户使用时间和地理位置信息。 这些可以帮助开发者的应用更好地吸引广告商, 也可以帮助开发者对自己的应用进行改善。
零售业:主要集中在客户营销分析上,通过大数据技术可以对客户的消费信息进行分析。获知
客户的消费习惯、消费方向等,以便商场做好更合理商品、货架摆放,规划市场营销方案、产品推荐手段等。
金融业:在金融行业里头,数据即是生命,其信息系统中积累了大量客户的交易数据。通过大数据可以对客户的行为进行分析、防堵诈骗、金融风险分析等。
医疗业:通过大数据可以辅助分析疫情信息,对应做出相应的防控措施。对人体健康的趋势分析在电子病历、医学研发和临床试验中,可提高诊断准确性和药物有效性等。
制造业:该行业对大数据的需求主要体现在产品研发与设计、供应链管理、生产、售后服务等。通过数据分析,在产品研发过程中免除掉一些不必要的步骤,并且及时改善产品的制造与组装的流程。
(1)内部控制组织组织是体系运行的基本保障。
其中,是否设置专职的内控部门是企业界关注的焦点,通常的设置方式包括三种:方式一:单独设置内控部门。方式二:由内部审计部门牵头负责内控工作。
方式三:在内部控制建设集中期设立内部控制建设办公室,该办公室从各主要部门抽调人员专职从事内控体系建设工作,待体系正式运行时,办公室解散,人员归位到各经营管理部门,且牵头职能也归位至内审部门。(2)内部环境的诊断与完善(3)动态的风险评估(4)控制活动的设计内控手册分模块设计,每一模块一般包括五个方面的内容:第一,管理目标。
第二,管理机构及职责。第三,授权审批矩阵。
第四,控制活动要求。第五,比照上述几部分,各经营管理部门应当重新梳理与完善业务流程,针对关键风险点强化控制措施,确保组织职责、授权审批、内控要求落实到经营流程中,保证管理目标的实现。
(5)信息与沟通贯穿始终(6)内部监督手段。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.291秒