1、若函数在某点可微分,则函数在该点必连续;
2、若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。
3、若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
设函数y= f(x),若自变量在点x的改变量Δx与函数相应的改变量Δy有关系Δy=A*Δx+ο(Δx),其中A与Δx无关,则称函数f(x)在点x可微,并称AΔx为函数f(x)在点x的微分,记作dy,即dy=A*Δx,当x= x0时,则记作dy∣x=x0。
扩展资料
魏尔斯特拉斯函数连续,但在任一点都不可微。
若ƒ在X0点可微,则ƒ在该点必连续。特别的,所有可微函数在其定义域内任一点必连续。逆命题则不成立:一个连续函数未必可微。比如,一个有折点、尖点或垂直切线的函数可能是连续的,但在异常点不可微。
实践中运用的函数大多在所有点可微,或几乎处处可微。但斯特凡·巴拿赫声称可微函数在所有函数构成的集合中却是少数。这表示可微函数在连续函数中不具代表性。人们发现的第一个处处连续但处处不可微的函数是魏尔斯特拉斯函数。
参考资料来源:百度百科-可微函数
参考资料来源:百度百科-可微
1、函数可微的必要条件
若函数在某点可微分,则函数在该点必连续;
若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。
2、函数可微的充分条件
若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
扩展资料:
1、可微的几何意义就是曲面被平面所截所得点处切线的斜率。
2、若ƒ在X0点可微,则ƒ在该点必连续。特别的,所有可微函数在其定义域内任一点必连续。逆命题则不成立:一个连续函数未必可微。比如,一个有折点、尖点或垂直切线的函数可能是连续的,但在异常点不可微。
3、实践中运用的函数大多在所有点可微,或几乎处处可微。但斯特凡·巴拿赫声称可微函数在所有函数构成的集合中却是少数。这表示可微函数在连续函数中不具代表性。人们发现的第一个处处连续但处处不可微的函数是魏尔斯特拉斯函数。
参考资料来源:搜狗百科-可微
参考资料来源:搜狗百科-可微函数
一、可以用可微的相关知识去判断,但是如果题目不是要证明是否可微,对于某些不可微的函数是可以一眼就看出来的,而不用证明。
函数可微的直观几何解释是函数图象在该点是“光滑”的,即函数图象不能是“尖点”,回忆一元函数y=|x|在x=0点的图象是一个尖点,故这个函数在x=0处不可微。本题中二元函数的图象是一个锥体,而(0,0)点对应的z是这个锥体的顶点,它是一个"尖点",所以在该点不可微。
二、按定义,f(x,y)在(0,0)点可微就是要求lim[f(x,y)-f(0,0)-Ax-By]/√(x^2+y^2)=0(A,B是常数),本题中这个极限表达式为lim[1-√(x^2+y^2)-1-Ax-By]/√(x^2+y^2)=1-lim(Ax+By)/√(x^2+y^2),令y=kx,
则lim(Ax+By)/√(x^2+y^2)=(A+Bk)/√(1+k^2),极限与k有关,故这个极限不存在,因此极限lim[1-√(x^2+y^2)-1-Ax-By]/√(x^2+y^2)也就不存在,故在原点不可微。
扩展资料:
魏尔斯特拉斯函数连续,但在任一点都不可微。
若ƒ在X0点可微,则ƒ在该点必连续。特别的,所有可微函数在其定义域内任一点必连续。逆命题则不成立:一个连续函数未必可微。比如,一个有折点、尖点或垂直切线的函数可能是连续的,但在异常点不可微。
实践中运用的函数大多在所有点可微,或几乎处处可微。但斯特凡·巴拿赫声称可微函数在所有函数构成的集合中却是少数。这表示可微函数在连续函数中不具代表性。人们发现的第一个处处连续但处处不可微的函数是魏尔斯特拉斯函数。
参考资料来源:百度百科-可微函数
极限的概念是整个微积分的基础,需要深刻地理解,由极限的概念才能引出连续、导数、积分等概念。
极限的概念首先是从数列的极限引出的。对于任意小的正数e,如果存在自然数m,使所有n》m时,|a(n)-a|都小于e,则数列的极限为a。
极限不是相等,而是无限接近。而函数的极限是指在x0的一个临域内(不包含x0这一点),如果对于任意小的正数e,都存在正数q,使所有(x0-q,x0+q)内的点,都满足|f(x)-a|《e,则f(x)在x0点的极限为a。
很多求极限的题目都可以用极限的定义直接求出。 例如f(x)=(x^2-3x+2)/(x-2), x=2不在函数定义域内,但对于任何x不等于2,f(x)=x-1,因此在x无限接近2,但不等于2时,f(x)无限接近1,因此f(x)在2处的极限为1。
连续的概念。如果函数在x0的极限存在,函数在x0有定义,而且极限值等于函数值,则称f(x)在x0点连续。
以上的三个条件缺一不可。 在上例中,f(x)在x=2时极限存在,但在x=2这一点没有定义,所以函数在x=2不连续; 如果我们定义f(2)=1,补上“缺口”,则函数在x=2变成连续的; 如果我们定义f(2)=3,虽然函数在x=2时,极限值和函数值都存在,但不相等,那么函数在x=2还是不连续。
由连续又引出了左极限、右极限和左连续、右连续的概念。函数值等于左极限为左连续,函数值等于右极限为右连续。
如果函数在x0点左右极限都存在,且都等于函数值,则函数在x=x0时连续。这个定义是解决分段函数连续问题的最重要的、几乎是唯一的方法。
如果函数在某个区间内每一点都连续,在区间的左右端点分别左右连续(对闭区间而言),则称函数在这个区间上连续。 导数的概念。
导数是函数的变化率,直观地看是指切线的斜率。略有不同的是,切线可以平行于y轴,此时斜率为无穷大,因此导数不存在,但切线存在。
导数的求法也是一个极限的求法。对于x=x0,在x0附近另找一点x1,求x0与x1连线的斜率。
当x1无限靠近x0,但不与x0重合时,这两点连线的斜率,就是f(x)在x=x0处的导数。关于导数的题目多数可用导数的定义直接解决。
教科书中给出了所有基本函数的导数公式,如果自己能用导数的定义都推导一遍,理解和记忆会更深刻。其中对数的导数公式推导中用到了重要极限:limx-->0 (1+x)^(1/x)=e。
导数同样分为左导数和右导数。导数存在的条件是:f(x)在x=x0连续,左右导数存在且相等。
这个定义是解决分段函数可导问题的最重要的、几乎是唯一的方法。 如果函数在某个区间内每一点都可导,在区间的左右端点分别左右导数存在(对闭区间而言),则称函数在这个区间上可导。
复合函数的导数,例如f[u(x)],是集合a中的自变量x,产生微小变化dx,引起集合b中对应数u的微小变化du,u的变化又引起集合c中的对应数f(u)的变化,则复合函数的导函数f'[u(x)]=df(u)/dx=df(u)/du * du/dx=f'(u)*u'(x) 导数在生活中的例子最常见的是距离与时间的关系。物体在极其微小的时间内,移动了极其微小的距离,二者的比值就是物体在这一刻的速度。
对于自由落体运动,下落距离s=1/2gt^2,则物体在时间t0的速度为v(t0)=[s(t0+a)-s(t0)]/a, 当a趋近于0时的值,等于gt0; 而速度随时间的增加而增加,变化的比率g称为加速度。加速度是距离对时间的二阶导数。
从直观上看,可导意味着光滑的、没有尖角,因为在尖角处左右导数不相等。有笑话说一位教授对学生抱怨道:“这饭馆让人怎么吃饭?你看这碗口,处处不可导!” 积分的概念。
从面积上理解,积分就是积少成多,把无限个面积趋近于0的线条,累积在一起,就成为大于0的面积。我们可以把一块图形分割为狭长的长方形(长方形的高度都取函数在左端或右端的函数值),分别计算各个长方形的面积再加总,可近似地得出图形的面积。
当我们把长方形的宽度设定得越来越窄,计算结果就越来越精确,与图形实际面积的差距越来越小。如果函数的积分存在,则长方形宽度趋近于0时,求出的长方形面积总和的极限存在,且等于图形的实际面积。
这里又是一个极限的概念。 如果函数存在不连续的点,但在该点左右极限都存在,函数仍是可积的。
只要间断点的个数是有限的,则它们代表的线条面积总和为0,不影响计算结果。 在广义积分中,允许函数在无限区间内积分,或某些点的函数值趋向无穷大,只要积分的极限存在,函数都是可积的。
严格地说,我们只会计算长方形的面积。从我们介绍的积分的求法看,我们实际上是把求面积化为了数列求和的问题,即求数列的前n项和s(n),在n趋近于无穷大时的极限。
很多时候,求积分和求无限数列的和是可以相互转换的。当我们深刻地理解了积分的定义和熟练地掌握了积分公式之后,我们同样可用它来解决相当棘手的数列求和问题。
例如:求lim na正无穷大时,1/n*[1+1/(1+1/n)+1/(1+2/n)+。
+1/(1+(n-1)/n)+1/2]的值。
看似无从下手,可当我们把它转化为一连串的小长方形的面积之后,不禁会恍然大悟:这不是f(x)=1/x在[1,2]上的积分吗?从而轻松得出结果为ln2。 除了基本的积分公式外,换元法和分步法是常用的积分方法。
换元积分法的实质是把原函数化为形式简单的复合函数;分步积分法的要领是:在∫udv=uv-∫vdu中,。
一、函数可微的判断
1、函数可微的必要条件
若函数在某点可微分,则函数在该点必连续;
若二元函数在某点可微分,则该函数在该点对x和y的偏导数必存在。
2、函数可微的充分条件
若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。
二、多元函数可微的条件
多元函数可微的充分必要条件是f(x,y)在点(x0,y0)的两个偏导数都存在。
扩展资料:
微分的推导
设函数y = f(x)在某区间内有定义,x0及x0+△x在这区间内,若函数的增量Δy = f(x0 + Δx) − f(x0)可表示为Δy = AΔx + o(Δx),其中A是不依赖于△x的常数, o(Δx)是△x的高阶无穷小,则称函数y = f(x)在点x0是可微的。
AΔx叫做函数在点x0相应于自变量增量△x的微分,记作dy,即:dy=AΔx。微分dy是自变量改变量△x的线性函数,dy与△y的差是关于△x的高阶无穷小量,我们把dy称作△y的线性主部。
得出: 当△x→0时,△y≈dy。
导数的记号为:(dy)/(dx)=f′(X),我们可以发现,它不仅表示导数的记号,而且还可以表示两个微分的比值(把△x看成dx,即:定义自变量的增量等于自变量的微分),还可表示为dy=f′(X)dX。
参考资料来源:百度百科-可微性
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.003秒