处理不完备数据集的方法主要有以下三大类: (一)删除元组 也就是将存在遗漏信息属性值的对象(元组,记录)删除,从而得到一个完备的信息表。
这种方法简单易行,在对象有多个 属性缺失值、被删除的含缺失值的对象与信息表中的数据量相比非常小的情况下是非常有效的,类标号(假设是分类任务)缺少时 通常使用。然而,这种方法却有很大的局限性。
它是以减少历史数据来换取信息的完备,会造成资源的大量浪费,丢弃了大量隐藏 在这些对象中的信息。在信息表中本来包含的对象很少的情况下,删除少量对象就足以严重影响到信息表信息的客观性和结果的正 确性;当每个属性空值的百分比变化很大时,它的性能非常差。
因此,当遗漏数据所占比例较大,特别当遗漏数据非随机分布时, 这种方法可能导致数据发生偏离,从而引出错误的结论。 (二)数据补齐 这类方法是用一定的值去填充空值,从而使信息表完备化。
通常基于统计学原理,根据决策表中其余对象取值的分布情况来 对一个空值进行填充,譬如用其余属性的平均值来进行补充等。数据挖掘中常用的有以下几种补齐方法: (1)人工填写(filling manually) 由于最了解数据的还是用户自己,因此这个方法产生数据偏离最小,可能是填充效果最好的一种。
然而一般来说,该方法很费时, 当数据规模很大、空值很多的时候,该方法是不可行的。 (2)特殊值填充(Treating Missing Attribute values as Special values) 将空值作为一种特殊的属性值来处理,它不同于其他的任何属性值。
如所有的空值都用“unknown”填充。这样将形成另一个有趣的 概念,可能导致严重的数据偏离,一般不推荐使用。
(3)平均值填充(Mean/Mode Completer) 将信息表中的属性分为数值属性和非数值属性来分别进行处理。如果空值是数值型的,就根据该属性在其他所有对象的取值 的平均值来填充该缺失的属性值;如果空值是非数值型的,就根据统计学中的众数原理,用该属性在其他所有对象的取值次数最多 的值(即出现频率最高的值)来补齐该缺失的属性值。
另外有一种与其相似的方法叫条件平均值填充法(Conditional Mean Completer)。在该方法中,缺失属性值的补齐同样是靠该属性在其他对象中的取值求平均得到,但不同的是用于求平均的值并不是 从信息表所有对象中取,而是从与该对象具有相同决策属性值的对象中取得。
这两种数据的补齐方法,其基本的出发点都是一样的 ,以最大概率可能的取值来补充缺失的属性值,只是在具体方法上有一点不同。与其他方法相比,它是用现存数据的多数信息来推 测缺失值。
(4)热卡填充(Hot deck imputation,或就近补齐) 对于一个包含空值的对象,热卡填充法在完整数据中找到一个与它最相似的对象,然后用这个相似对象的值来进行填充。不 同的问题可能会选用不同的标准来对相似进行判定。
该方法概念上很简单,且利用了数据间的关系来进行空值估计。这个方法的缺 点在于难以定义相似标准,主观因素较多。
(5)K最近距离邻法(K-means clustering) 先根据欧式距离或相关分析来确定距离具有缺失数据样本最近的K个样本,将这K个值加权平均来估计该样本的缺失数据。 (6)使用所有可能的值填充(Assigning All Possible values of the Attribute) 这种方法是用空缺属性值的所有可能的属性取值来填充,能够得到较好的补齐效果。
但是,当数据量很大或者遗漏的属性值 较多时,其计算的代价很大,可能的测试方案很多。另有一种方法,填补遗漏属性值的原则是一样的,不同的只是从决策相同的对 象中尝试所有的属性值的可能情况,而不是根据信息表中所有对象进行尝试,这样能够在一定程度上减小原方法的代价。
(7)组合完整化方法(Combinatorial Completer) 这种方法是用空缺属性值的所有可能的属性取值来试,并从最终属性的约简结果中选择最好的一个作为填补的属性值。这是 以约简为目的的数据补齐方法,能够得到好的约简结果;但是,当数据量很大或者遗漏的属性值较多时,其计算的代价很大。
另一 种称为条件组合完整化方法(Conditional Combinatorial Complete),填补遗漏属性值的原则是一样的,不同的只是从决策相同 的对象中尝试所有的属性值的可能情况,而不是根据信息表中所有对象进行尝试。条件组合完整化方法能够在一定程度上减小组合 完整化方法的代价。
在信息表包含不完整数据较多的情况下,可能的测试方案将巨增。 (8)回归(Regression) 基于完整的数据集,建立回归方程(模型)。
对于包含空值的对象,将已知属性值代入方程来估计未知属性值,以此估计值 来进行填充。当变量不是线性相关或预测变量高度相关时会导致有偏差的估计。
(9)期望值最大化方法(Expectation maximization,EM) EM算法是一种在不完全数据情况下计算极大似然估计或者后验分布的迭代算法[43]。在每一迭代循环过程中交替执行两个步 骤:E步(Excepctaion step,期望步),在给定完全数据和前一次迭代所得到的参数估计的情况下计算完全数据对应的对数似然函 数的条件期望;M步(Maximzation step,极大化步),用极大化对数似然函数以确定参数的值,并用。
去百度文库,查看完整内容>
内容来自用户:rjasd1128hf
4
统计教育
2006年第12期
缺失数据的多重插补方法
文/乔丽华傅德印
摘要:插补法是对缺失数据的调整方法,多重插补弥补了单一插补的缺陷,采用一系列可能的数据集来填充每一个缺失数据值,反映了缺失数据的不确定性。本文介绍了多重插补程序的三种数据插补方法:回归预测法、倾向得分法和蒙特卡罗的马氏链方法,并且对多重插补的插补效果进行推断,指出多重插补存在的问题。
关键词:多重插补;缺失数据
一、引言
在数据处理和数据分析中经常会出现缺失数据(missingdata)或不完全数据(incompletedata),从抽样调查的角度,把这些数据归结为无回答数据集。一般把无回答分为“单位无回答”和“项目无回答”。“项目无回答”是指被调查单位虽然接受了调查,但只回答了其中的一部分而非全部的问题,或者对某些项目提供的资料是无用的。对于“项目无回答”,如果重新调查来获得准确数据,会浪费大量的时间、人力和财力,是不现实的。因此对“项目无回答”的弥补处理多采用插补法(imputationmethod)。
插补法是指采取一定的方式为调查中的每一个缺失数据寻找一个合理的替补值插补到原缺失数据的位置上,对得到的“完全数据集”使用完全数据统计分析方法分析并进行统
收集方法
1、调查法
调查方法一般分为普查和抽样调查两大类。
2、观察法
主要包括两个方面:一是对人的行为的观察,二是对客观事物的观察。观察法应用很广泛,常和询问法、搜集实物结合使用,以提高所收集信息的可靠性。
3、实验方法
实验方法能通过实验过程获取其他手段难以获得的信息或结论。
实验方法也有多种形式,如实验室实验、现场实验、计算机模拟实验、计算机网络环境下人机结合实验等。现代管理科学中新兴的管理实验,现代经济学中正在形成的实验经济学中的经济实验,实质上就是通过实验获取与管理或经济相关的信息。
4、文献检索
文献检索就是从浩繁的文献中检索出所需的信息的过程。文献检索分为手工检索和计算机检索。
5、网络信息收集
网络信息是指通过计算机网络发布、传递和存储的各种信息。收集网络信息的最终目标是给广大用户提供网络信息资源服务,整个过程经过网络信息搜索、整合、保存和服务四个步骤,
参考资料来源:搜狗百科-信息收集
数据清洗目的主要有:
①解决数据质量问题;
②让数据更适合做挖掘;
数据清洗是对数据审查过程中发现的明显错误值、缺失值、异常值、可疑数据,选用一定方法进行“清洗”,为后续的数据分析做准备。
数据清洗的方法有:
①数据数值化
对存在各种不同格式的数据形式的原始数据,对其进行标准化操作。对字符串取值,按照ANSI码值求和得到字符串的值,如果值太大,取一个适当的质数对其求模。
②标准化 normalization
对整体数据进行归一化工作,利用min-max标准化方法将数据都映射到一个指定的数值区间。
③数据降维
原始数据存在很多维度,使用主成分分析法对数据的相关性分析来降低数据维度。
④数据完整性
数据完整性包括数据缺失补数据和数据去重;
补全数据的方法有:
1. 通过身份证件号码推算性别、籍贯、出生日期、年龄(包括但不局限)等信息补全;
2. 通过前后数据补全;
3. 实在补不全的,对数据进行剔除。
数据去重的方法有:
1. 用sql或者excel“去除重复记录”去重;
2. 按规则去重,编写一系列的规则,对重复情况复杂的数据进行去重。
1、均值插补。数据的属性分为定距型和非定距型。如果缺失值是定距型的,就以该属性存在值的平均值来插补缺失的值;如果缺失值是非定距型的,就根据统计学中的众数原理,用该属性的众数(即出现频率最高的值)来补齐缺失的值。
2、利用同类均值插补。同均值插补的方法都属于单值插补,不同的是,它用层次聚类模型预测缺失变量的类型,再以该类型的均值插补。假设X=(X1,X2。Xp)为信息完全的变量,Y为存在缺失值的变量。
那么首先对X或其子集行聚类,然后按缺失个案所属类来插补不同类的均值。如果在以后统计分析中还需以引入的解释变量和Y做分析,那么这种插补方法将在模型中引入自相关,给分析造成障碍。
3、极大似然估计(Max Likelihood ,ML)。在缺失类型为随机缺失的条件下,假设模型对于完整的样本是正确的,那么通过观测数据的边际分布可以对未知参数进行极大似然估计(Little and Rubin)。
这种方法也被称为忽略缺失值的极大似然估计,对于极大似然的参数估计实际中常采用的计算方法是期望值最大化(Expectation Maximization,EM)。
4、多重插补(Multiple Imputation,MI)。多值插补的思想来源于贝叶斯估计,认为待插补的值是随机的,它的值来自于已观测到的值。具体实践上通常是估计出待插补的值,然后再加上不同的噪声,形成多组可选插补值。根据某种选择依据,选取最合适的插补值。
扩展资料
缺失值产生的原因很多,装备故障、无法获取信息、与其他字段不一致、历史原因等都可能产生缺失值。一种典型的处理方法是插值,插值之后的数据可看作服从特定概率分布。另外,也可以删除所有含缺失值的记录,但这个操作也从侧面变动了原始数据的分布特征。
对于缺失值的处理,从总体上来说分为删除存在缺失值的个案和缺失值插补。对于主观数据,人将影响数据的真实性,存在缺失值的样本的其他属性的真实值不能保证,那么依赖于这些属性值的插补也是不可靠的,所以对于主观数据一般不推荐插补的方法。插补主要是针对客观数据,它的可靠性有保证。
参考资料来源:百度百科-不确定性数据
参考资料来源:百度百科-缺失值
分析大数据,R语言和Linux系统比较有帮助,运用到的方法原理可以翻翻大学的统计学,不需要完全理解,重在应用。
分析简单数据,Excel就可以了。Excel本意就是智能,功能很强,容易上手。我没有见过有人说自己精通Excel的,最多是熟悉Excel。Excel的函数可以帮助你处理大部分数据。
数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。
数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际操作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。
“啤酒与尿布”的故事产生于20世纪90年代的美国沃尔玛超市中,沃尔玛的超市管理人员分析销售数据时发现了一个令人难于理解的现象:在某些特定的情况下,“啤酒”与“尿布”两件看上去毫无关系的商品会经常出现在同一个购物篮中,这种独特的销售现象引起了管理人员的注意,经过后续调查发现,这种现象出现在年轻的父亲身上。
在美国有婴儿的家庭中,一般是母亲在家中照看婴儿,年轻的父亲前去超市购买尿布。父亲在购买尿布的同时,往往会顺便为自己购买啤酒,这样就会出现啤酒与尿布这两件看上去不相干的商品经常会出现在同一个购物篮的现象。如果这个年轻的父亲在卖场只能买到两件商品之一,则他很有可能会放弃购物而到另一家商店, 直到可以一次同时买到啤酒与尿布为止。沃尔玛发现了这一独特的现象,开始在卖场尝试将啤酒与尿布摆放在相同的区域,让年轻的父亲可以同时找到这两件商品,并很快地完成购物;而沃尔玛超市也可以让这些客户一次购买两件商品、而不是一件,从而获得了很好的商品销售收入,这就是“啤酒与尿布” 故事的由来。
当然“啤酒与尿布”的故事必须具有技术方面的支持。1993年美国学者Agrawal提出通过分析购物篮中的商品集合,从而找出商品之间关联关系的关联算法,并根据商品之间的关系,找出客户的购买行为。艾格拉沃从数学及计算机算法角度提 出了商品关联关系的计算方法——Aprior算法。沃尔玛从上个世纪 90 年代尝试将 Aprior 算 法引入到 POS机数据分析中,并获得了成功,于是产生了“啤酒与尿布”的故事。
一、数据挖掘工具分类数据挖掘工具根据其适用的范围分为两类:专用挖掘工具和通用挖掘工具。
专用数据挖掘工具是针对某个特定领域的问题提供解决方案,在涉及算法的时候充分考虑了数据、需求的特殊性,并作了优化。对任何领域,都可以开发特定的数据挖掘工具。
例如,IBM公司的AdvancedScout系统针对NBA的数据,帮助教练优化战术组合。特定领域的数据挖掘工具针对性比较强,只能用于一种应用;也正因为针对性强,往往采用特殊的算法,可以处理特殊的数据,实现特殊的目的,发现的知识可靠度也比较高。
通用数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。通用的数据挖掘工具不区分具体数据的含义,采用通用的挖掘算法,处理常见的数据类型。
例如,IBM公司Almaden研究中心开发的QUEST系统,SGI公司开发的MineSet系统,加拿大SimonFraser大学开发的DBMiner系统。通用的数据挖掘工具可以做多种模式的挖掘,挖掘什么、用什么来挖掘都由用户根据自己的应用来选择。
二、数据挖掘工具选择需要考虑的问题数据挖掘是一个过程,只有将数据挖掘工具提供的技术和实施经验与企业的业务逻辑和需求紧密结合,并在实施的过程中不断的磨合,才能取得成功,因此我们在选择数据挖掘工具的时候,要全面考虑多方面的因素,主要包括以下几点:(1)可产生的模式种类的数量:分类,聚类,关联等(2)解决复杂问题的能力(3)操作性能(4)数据存取能力(5)和其他产品的接口三、数据挖掘工具介绍:1.QUESTQUEST是IBM公司Almaden研究中心开发的一个多任务数据挖掘系统,目的是为新一代决策支持系统的应用开发提供高效的数据开采基本构件。系统具有如下特点:提供了专门在大型数据库上进行各种开采的功能:关联规则发现、序列模式发现、时间序列聚类、决策树分类、递增式主动开采等。
各种开采算法具有近似线性计算复杂度,可适用于任意大小的数据库。算法具有找全性,即能将所有满足指定类型的模式全部寻找出来。
为各种发现功能设计了相应的并行算法。2.MineSetMineSet是由SGI公司和美国Standford大学联合开发的多任务数据挖掘系统。
MineSet集成多种数据挖掘算法和可视化工具,帮助用户直观地、实时地发掘、理解大量数据背后的知识。MineSet有如下特点:MineSet以先进的可视化显示方法闻名于世。
支持多种关系数据库。可以直接从Oracle、Informix、Sybase的表读取数据,也可以通过SQL命令执行查询。
多种数据转换功能。在进行挖掘前,MineSet可以去除不必要的数据项,统计、集合、分组数据,转换数据类型,构造表达式由已有数据项生成新的数据项,对数据采样等。
操作简单、支持国际字符、可以直接发布到Web。3.DBMinerDBMiner是加拿大SimonFraser大学开发的一个多任务数据挖掘系统,它的前身是DBLearn。
该系统设计的目的是把关系数据库和数据开采集成在一起,以面向属性的多级概念为基础发现各种知识。DBMiner系统具有如下特色:能完成多种知识的发现:泛化规则、特性规则、关联规则、分类规则、演化知识、偏离知识等。
综合了多种数据开采技术:面向属性的归纳、统计分析、逐级深化发现多级规则、元规则引导发现等方法。提出了一种交互式的类SQL语言——数据开采查询语言DMQL。
能与关系数据库平滑集成。实现了基于客户/服务器体系结构的Unix和PC(Windows/NT)版本的系统。
4.IntelligentMiner由美国IBM公司开发的数据挖掘软件IntelligentMiner是一种分别面向数据库和文本信息进行数据挖掘的软件系列,它包括和。可以挖掘包含在数据库、数据仓库和数据中心中的隐含信息,帮助用户利用传统数据库或普通文件中的结构化数据进行数据挖掘。
它已经成功应用于市场分析、诈骗行为监测及客户联系管理等;允许企业从文本信息进行数据挖掘,文本数据源可以是文本文件、Web页面、电子邮件、LotusNotes数据库等等。5.SASEnterpriseMiner这是一种在我国的企业中得到采用的数据挖掘工具,比较典型的包括上海宝钢配矿系统应用和铁路部门在春运客运研究中的应用。
SASEnterpriseMiner是一种通用的数据挖掘工具,按照"抽样--探索--转换--建模--评估"的方法进行数据挖掘。可以与SAS数据仓库和OLAP集成,实现从提出数据、抓住数据到得到解答的"端到端"知识发现。
6.是一个开放式数据挖掘工具,曾两次获得英国政府SMART创新奖,它不但支持整个数据挖掘流程,从数据获取、转化、建模、评估到最终部署的全部过程,还支持数据挖掘的行业标准--CRISP-DM。Clementine的可视化数据挖掘使得"思路"分析成为可能,即将集中精力在要解决的问题本身,而不是局限于完成一些技术性工作(比如编写代码)。
提供了多种图形化技术,有助理解数据间的关键性联系,指导用户以最便捷的途径找到问题的最终解决法。7.数据库厂商集成的挖掘工具SQLServer2000包含由Microsoft研究院开发的两种数据挖掘算法:。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.335秒