判定全等三角形(包括直角三角形全等的判定)有六种方法:
(1)定义法:两个完全重合的三角形全等.
(2)SSS:三个对应边相等的三角形全等.
(3)SAS:两边及其夹角对应相等的三角形全等.
(4)ASA:两角及其夹边对应相等的三角形全等.
(5)AAS:两角及其中一角的对边对应相等的三角形全等.
(6)HL:斜边和一条直角边对应相等的两个直角三角形全等.第一题:A.符合AAS所以判定两个三角形全等B.符合ASA所以判定两个三角形全等C.AC对应角B,DE对应角F,两边所对应的角不相等,所以不能判定两个三角形全等D.符合SAS所以判定两个三角形全等
1、三组对应边分别相等的两个三角形全等(简称SSS或“边边边”)
2.有两边及其夹角对应相等的两个三角形全等(SAS或“边角边”)。
3.有两角及其夹边对应相等的两个三角形全等(ASA或“角边角”)。
4.有两角及其一角的对边对应相等的两个三角形全等(AAS或“角角边”)
5.斜边及一直角边对应相等的两个直角三角形全等(HL或“斜边,直角边”)
safd48 说的没错
假设三角形ABC全等于三角形DEF ,则AB=DE,BC=EF,AC=DF(在写两个三角形的字母顺序时,对应顶点要写在同一位置上,所以A点对应D点,所以说AB=DE,角ABC=角DEF )
想要例题的话直接在网上搜全等三角形的判定练习题
1.一般三角形全等的判定 (1)如果两个三角形的三条边分别对应相等,那么这两个三角形全等,简记为(SSS)。
(2)如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等,简记为(SAS)。 (3)如果两个三角形的两角及其夹边分别对应相等,那么这两个三角形全等,简记为(ASA)。
(4)如果三角形的两角及其中一角的对边分别对应相等,那么这两个三角形全等,简记为(AAS)。 2. 直角三角形全等的判定 斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”) 3. 证明三角形全等的思路 :(1)已知两边, 找夹角找直角 找另一边 。
(2)已知一边一角 , 边为角的对边时,找另一角 边为角的邻边时,找夹角的另一边找夹边的另一角找边的对角 (3)已知两角找任意一边。
全等三角形判定方法一:SSS(边边边),即三边对应相等的两个三角形全等.举例:如下图,AC=BD,AD=BC,求证∠A=∠B.证明:在△ACD与△BDC中{AC=BD,AD=BC,CD=CD.∴△ACD≌△BDC.(SSS)∴∠A=∠B.(全等三角形的对应角相等)>全等三角形判定方法二:SAS(边角边),即三角形的其中两条边对应相等,且两条边的夹角也对应相等的两个三角形全等.举例:如下图,AB平分∠CAD,AC=AD,求证∠C=∠D.证明:∵AB平分∠CAD.∴∠CAB=∠BAD.在△ACB与△ADB中{AC=AD,∠CAB=∠BAD,AB=AB.∴△ACB≌△ADB.(SAS)∴∠C=∠D.(全等三角形的对应角相等)>全等三角形判定方法三:ASA(角边角),即三角形的其中两个角对应相等,且两个角夹的的边也对应相等的两个三角形全等.举例:如下图,AB=AC,∠B=∠C,求证△ABE≌△ACD.证明:在△ABE与△ACD中{∠A=∠A,AB=AC,∠B=∠C.∴△ABE≌△ACD.(ASA)>全等三角形判定方法四:AAS(角角边),即三角形的其中两个角对应相等,且对应相等的角所对应的边也对应相等的两个三角形全等.举例:如下图,AB=DE,∠A=∠E,求证∠B=∠D.证明:在△ABC与△EDC中{∠A=∠E,∠ACB=∠DCE,AB=DE.∴△ABC≌△EDC.(AAS)∴∠B=∠D.(全等三角形的对应角相等)>全等三角形判定方法五:HL(斜边、直角边),即在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等.举例:如下图,Rt△ADC与Rt△BCD,AC=BD,求证AD=BC.证明:在Rt△ADC与Rt△BCD中{AC=BD,CD=CD.∴Rt△ADC与Rt△BCD.(HL)∴AD=BC.(全等三角形的对应边相等)。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.573秒