1、第二类换元积分法
令t=√(x-1),则x=t^2+1,dx=2tdt
原式=∫(t^2+1)/t*2tdt
=2∫(t^2+1)dt
=(2/3)*t^3+2t+C
=(2/3)*(x-1)^(3/2)+2√(x-1)+C,其中C是任意常数
2、第一类换元积分法
原式=∫(x-1+1)/√(x-1)dx
=∫[√(x-1)+1/√(x-1)]d(x-1)
=(2/3)*(x-1)^(3/2)+2√(x-1)+C,其中C是任意常数
3、分部积分法
原式=∫2xd[√(x-1)]
=2x√(x-1)-∫2√(x-1)dx
=2x√(x-1)-(4/3)*(x-1)^(3/2)+C,其中C是你任意常数
不定积分公式为:
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定,其中F是f的不定积分。
根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
扩展资料:
积分发展的动力源自实际应用中的需求。实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。
要求简单几何形体的面积或体积,可以套用已知的公式。比如一个长方体状的游泳池的容积可以用长*宽*高求出。
但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。
一、积分公式法
直接利用积分公式求出不定积分。
二、换元积分法
换元积分法可分为第一类换元法与第二类换元法。
1、第一类换元法(即凑微分法)
通过凑微分,最后依托于某个积分公式。进而求得原不定积分。
2、注:第二类换元法的变换式必须可逆,并且在相应区间上是单调的。
第二类换元法经常用于消去被积函数中的根式。当被积函数是次数很高的二项式的时候,为了避免繁琐的展开式,有时也可以使用第二类换元法求解。常用的换元手段有两种:
(1) 根式代换法,
(2) 三角代换法。
在实际应用中,代换法最常见的是链式法则,而往往用此代替前面所说的换元。
三、分部积分法
设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu,两边积分,得分部积分公式:∫udv=uv-∫vdu ⑴。
称公式⑴为分部积分公式。如果积分∫vdu易于求出,则左端积分式随之得到。
分部积分公式运用成败的关键是恰当地选择u,v。
扩展资料:
牛顿-莱布尼茨公式:
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。这个重要理论就是牛顿-莱布尼兹公式,它的内容是:
如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么
即一个定积分式的值,就是原函数在上限的值与原函数在下限的值的差。
这个理论,揭示了积分与黎曼积分本质的联系。因此,牛顿-莱布尼兹公式也被称作微积分基本定理。
参考资料来源:百度百科-不定积分
不定积分公式为: 在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。
不定积分和定积分间的关系由微积分基本定理确定,其中F是f的不定积分。 根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。
这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。 一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。
连续函数,一定存在定积分和不定积分。 扩展资料:积分发展的动力源自实际应用中的需求。
实际操作中,有时候可以用粗略的方式进行估算一些未知量,但随着科技的发展,很多时候需要知道精确的数值。 要求简单几何形体的面积或体积,可以套用已知的公式。
比如一个长方体状的游泳池的容积可以用长*宽*高求出。 但如果游泳池是卵形、抛物型或更加不规则的形状,就需要用积分来求出容积。
物理学中,常常需要知道一个物理量(比如位移)对另一个物理量(比如力)的累积效果,这时也需要用到积分。
原发布者:xhj1017
常见不定积分公式 1)∫0dx=c 2)∫x^udx=(x^u+1)/(u+1)+c 3)∫1/xdx=ln|x|+c 4))∫a^xdx=(a^x)/lna+c 5)∫e^xdx=e^x+c 6)∫sinxdx=-cosx+c 7)∫cosxdx=sinx+c 8)∫1/(cosx)^2dx=tanx+c 9)∫1/(sinx)^2dx=-cotx+c 10)∫1/√(1-x^2) dx=arcsinx+c 11)∫1/(1+x^2)dx=arctanx+c 12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c 13)∫secxdx=ln|secx+tanx|+c 14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c 15)∫1/√(a^2-x^2) dx=arcsin(x/a)+c 16)∫sec^2xdx=tanx+c; 17)∫shxdx=chx+c; 18)∫chxdx=shx+c; 19)∫thxdx=ln(chx)+c;1.∫adx=ax+C(a为常数)2.∫sin(x)dx=-cos(x)+C3.∫cos(x)dx=sin(x)+C4.∫tan(x)dx=-loge|cos(x)|+C=loge|sec(x)|+C5.∫cot(x)dx=loge|sin(x)|+C6.∫sec(x)dx=loge|sec(x)+tan(x)|+C7.∫sin2(x)dx8.9.∫cos2(x)dx10.11.∫tan2(x)dx=tan(x)-x+C12.∫cot2(x)dx=-cot(x)-x+C13.∫sin(ax)sin(bx)dx14.∫sin(ax)cos(bx)dx15.∫cos(ax)cos(bx)dx16.∫xsin(x)dx=sin(x)-xcos(x)+C17.∫xcos(x)dx=cos(x)+xsin(x)+C18.∫x2sin(x)dx=(2-x2)cos(x)+2xsin(x)+C19.∫x2cos(x)dx=(x2-2)sin(x)+2xcos(x)+C20.∫exdx=ex+C21.
不定积分公式:∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。
不定积分的积分公式主要有如下几类:
含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分。
含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。
扩展资料:
积分性质
1、线性性
积分是线性的。如果一个函数f 可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。
2、保号性
如果一个函数f在某个区间上黎曼可积,并且在此区间上大于等于零。那么它在这个区间上的积分也大于等于零。如果f勒贝格可积并且几乎总是大于等于零,那么它的勒贝格积分也大于等于零。
函数的积分表示了函数在某个区域上的整体性质,改变函数某点的取值不会改变它的积分值。对于黎曼可积的函数,改变有限个点的取值,其积分不变。
参考资料来源:搜狗百科—积分公式
1)∫0dx=c 不定积分的定义
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
11)∫1/(1+x^2)dx=arctanx+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c 基本积分公式
14)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c
15)∫1/√(a^2-x^2) dx=(1/a)*arcsin(x/a)+c
16) ∫sec^2 x dx=tanx+c;
17) ∫shx dx=chx+c;
18) ∫chx dx=shx+c;
19) ∫thx dx=ln(chx)+c;
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.573秒