1、有机废气
(1)主要来源:工业生产中会产生各种有机物废气,主要包括各种烃类、醇类、醛类、酸类、酮类和胺类等。这些废气的来源十分广泛,其中一些化学行业石化、有机合成反应设备排气,印刷行业印墨中有机溶剂,机械行业机械喷漆,金属制品产生的气味,汽车行业汽车的喷漆、干燥炉铸件生产设备排气,五金、家私厂喷涂设备排气等。
(2)有机废气的危害:在生产中,有机废气的排放一直是一个很突出的问题,绝大多数有机废气对人体的健康都有害。如有机废气通过呼吸道和皮肤进入人体后,能给人的呼吸、血液、肝脏等系统和器官造成暂时性和永久性病变,尤其是苯并芘类多环芳烃能使人体直接致癌,危害人体健康。
有机废气还会造成严重的大气污染。一些有机物进入大气后,在一定条件下形成光化学烟雾,造成二次污染;一些有机物进入平流层后,在紫外线的照射下与臭氧发生光化学反应,造成臭氧层空洞;一些有机物具有恶臭污染和有害气体的两重性;还有一些有机物会引起温室效应。
(3)废气治理方法:
a.水膜除尘+活性碳吸附法;
b.干式过滤除尘+活性碳吸附法
2、酸雾废气
(1)主要来源:化工、电子、冶金、电镀、纺织(化纤)、食品、机械制造等行业过程中排放的酸、碱性废气,如调味食品、制酸、酸洗、电镀、电解、蓄电池等。
(2)酸雾废气的危害:酸雾气体造成的大气污染对人体造成的伤害较大, 尤其是对现场的操作工人、工厂附近的农作物、土壤造成直接的损害及间接影响往往是无法用金钱来衡量的。
(3)废气治理方法:水膜填料塔+碱(酸)液吸收
3、熔炉废气、发电黑烟
(1)主要来源:五金业、压铸业、铸造业熔炉设备在金属熔化过程中产生的金属粉尘颗粒及燃烧柴油(重油)过程中产生的SO2 、NOX有害气体,发电机工作时燃烧柴油(重油)过程中产生的废气等。
(2)熔炉废气、发电机黑烟的危害:熔炉废气、发电机黑烟是形成酸雨的主要原因,造成的大气污染较大, 尤其是对现场的操作工人、工厂附近的农作物、土壤造成直接的损害及间接影响。
(3)治理方法:旋流水洗喷淋法+碱液吸收
空气净化方法有:
一、光催化技术
日本科学家最先发现光照的TiO₂单晶电极能分解水,20世纪90年代光催化技术投入使用。当空气和水经过光触媒材料是技术单元时,通过氧化还原反应产生大量的氢氧根离子。
这些离子弥漫在空气中,通过破坏细菌的细胞膜、凝固病毒的蛋白质杀菌消毒,分解各种有机化合物和部分无机物,祛除有害气体和异味。已被实验证明的光催化杀菌机理有:细胞渗透作用、辅酶A的破坏、内毒素的降解、蛋白质和脂类的变性分解和细胞矿化等。
二、定量活性氧技术
活性氧是一项成熟技术,世界上使用活性氧已有一百多年的历史,它能迅速、彻底灭活细菌,合理使用时是国际公认的最环保、最彻底有效的净化方式之一。同时,其强氧化性使其能够与甲醛、苯等羰基(碳氧)、烃基(碳氢)化合物发生反应。
三、负离子技术
负离子技术又称单极离子流技术,其生成的负离子流,吸附空气中带正电荷的悬浮颗粒物,使颗粒物不断聚积变重,致其脱离气溶状态而沉降。
负离子对于直径介于0.001-100微米的颗粒物均有沉降效果但对于小于等于2.5微米的颗粒物称为细颗粒物,即PM2.5,只有活性高的小粒径负氧离子才有明显效果。负离子空气净化器利用空气弥漫性的特点使整个房间都充满负离子,能够快速除尘降尘,不留死角,净化作用较为彻底。
四、活性炭
活性炭用木屑、果壳、褐煤等含碳物质为原料,经碳化和活化制成。有粉状(粒径为10~50微米)和颗粒状(粒径为0.4~2.4毫米)两种。通性是多孔,比表面积大。
总表面积达每克500~1000㎡,活性炭的净化作用与孔径大小直接相关,当孔径大小接近颗粒物直径时净化作用最为明显,椰维炭是一种新型的活性炭,其孔径大小比较直径较小净化效果比较明显。
五、生态负离子生成芯片技术
生态负离子芯片将压电陶瓷负离子发生器及离子变换器(Ion converter)高度集成,不仅实现了生态级负离子的生成,而且极大的减小了负离子产品的体积和厚度,是全球最为领先的生态负离子生成技术。
离子变换器是负离子转换器的升级版,其实质是应用于负离子生成系统的脉冲频率增强器。脉冲频率增强器能有效提高负离子的脉动能量,使利用此技术的空气负离子功能电器产生等同于大自然的小粒径、高活性的生态级负氧离子。
参考资料来源:百度百科—空气净化
1、掩蔽法 采用更强烈的芳香气味与臭气掺和,以掩蔽臭气,使之能被人接收 适用于需立即地、暂时地消除低浓度恶臭气体影响的场合,恶臭强度2.5左右,无组织排放源 可尽快消除恶臭影响,灵活性大,费用低 恶臭成分并没有被去除
2、稀释扩散法 将有臭味地气体通过烟囱排至大气,或用无臭空气稀释,降低恶臭物质浓度以减少臭味 适用于处理中、低浓度的有组织排放的恶臭气体 费用低设备简单 易受气象条件限制,恶臭物质依然存在
3、热力燃烧法 在高温下恶臭物质与燃料气充分混和,实现完全燃烧 适用于处理高浓度、小气量的可燃性气体 净化效率高,恶臭物质被彻底氧化分解 设备易腐蚀,消耗燃料,处理成本高,易形成二次污染
4、催化燃烧法
5、水吸收法 利用臭气中某些物质易溶于水的特性,使臭气成分直接与水接触,从而溶解于水达到脱臭目的 水溶性、有组织排放源的恶臭气体 工艺简单,管理方便,设备运转费用低 产生二次污染,需对洗涤液进行处理;净化效率低,应与其他技术联合使用,对硫醇,脂肪酸等处理效果差
6、药液吸收法 利用臭气中某些物质和药液产生化学反应的特性,去除某些臭气成分 适用于处理大气量、高中浓度的臭气 能够有针对性处理某些臭气成分,工艺较成熟 净化效率不高,消耗吸收剂,易形成而二次污染
7、吸附法 利用吸附剂的吸附功能使恶臭物质由气相转移至固相 适用于处理低浓度,高净化要求的恶臭气体 净化效率很高,可以处理多组分恶臭气体 吸附剂费用昂贵,再生较困难,要求待处理的恶臭气体有较低的温度和含尘量
8、生物滤池式脱臭法 恶臭气体经过去尘增湿或降温等预处理工艺后,从滤床底部由下向上穿过由滤料组成的滤床,恶臭气体由气相转移至水—微生物混和相,通过固着于滤料上的微生物代谢作用而被分解掉 目前研究最多,工艺最成熟,在实际中也最常用的生物脱臭方法。又可细分为土壤脱臭法、堆肥脱臭法、泥炭脱臭法等。 处理费用低 占地面积大,填料需定期更换,脱臭过程不易控制,运行一段时间后容易出现问题,对疏水性和难生物降解物质的处理还存在较大难度。
9、生物滴滤池式 原理同生物滤池式类似,不过使用的滤料是诸如聚丙烯小球、陶瓷、木炭、塑料等不能提供营养物的惰性材料。 只有针对某些恶臭物质而降解的微生物附着在填料上,而不会出现生物滤池中混和微生物群同时消耗滤料有机质的情况 池内微生物数量大,能承受比生物滤池大的污染负荷,惰性滤料可以不用更换,造成压力损失小,而且操作条件极易控制 需不断投加营养物质,而且操作复杂,使得其应用受到限制
10、洗涤式活性污泥脱臭法 将恶臭物质和含悬浮物泥浆的混和液充分接触,使之在吸收器中从臭气中去除掉,洗涤液再送到反应器中,通过悬浮生长的微生物代谢活动降解溶解的恶臭物质 有较大的适用范围 可以处理大气量的臭气,同时操作条件易于控制,占地面积小 设备费用大,操作复杂而且需要投加营养物质
11、曝气式活性污泥脱臭法 将恶臭物质以曝气形式分散到含活性污泥的混和液中,通过悬浮生长的微生物降解恶臭物质 适用范围广,目前日本已用于粪便处理场、污水处理厂的臭气处理 活性污泥经过驯化后,对不超过极限负荷量的恶臭成分,去除率可达99.5%以上。 受到曝气强度的限制,该法的应用还有一定局限
12、三相多介质催化氧化工艺 反应塔内装填特制的固态复合填料,填料内部复配多介质催化剂。当恶臭气体在引风机的作用下穿过填料层,与通过特制喷嘴呈发散雾状喷出的液相复配氧化剂在固相填料表面充分接触,并在多介质催化剂的催化作用下,恶臭气体中的污染因子被充分分解。 适用范围广,尤其适用于处理大气量、中高浓度的废气,对疏水性污染物质有很好的去除率。 占地小,投资低,运行成本低;管理方便,即开即用;耐冲击负荷,不易污染物浓度及温度变化影响。 需消耗一定量的药剂
13、低温等离子体技术 介质阻挡放电过程中,等离子体内部产生富含极高化学活性的粒子,如电子、离子、自由基和激发态分子等。废气中的污染物质与这些具有较高能量的活性基团发生反应,最终转化为CO2和H2O等物质,从而达到净化废气的目的。 适用范围广,净化效率高,尤其适用于其它方法难以处理的多组分恶臭气体,如化工、医药等行业。 电子能量高,几乎可以和所有的恶臭气体分子作用;运行费用低;反应快,设备启动、停止十分迅速,随用随开。 一次性投资较高。
对于很多生产型的企业来说,生产车间排放的有机废气一般都存在易燃易爆、危害性大、不溶于水、溶于有机溶剂处理难度大的特点,那么用什么废气处理方法来净化废气效果更好呢?这里林森给大家介绍一下活性炭吸附处理法。
活性炭吸附塔是处理有机废气、臭气效果较好的一种废气净化设备。因为活性炭能有效吸附臭气、天然和合成有机物、微污染物质等。大部分比较大的有机物分子能牢固的被吸附在活性炭表面或空隙中,并对合成有机物和低分子有机物有明显的去除效果。
活性炭吸附塔外壳采用碳钢或PP板制成,塔体内外及网板表面均光滑美观,塔体的零部件也都是耐腐蚀。废气处理设备,过滤网便于安装及拆洗,塔体底部装有卸料口及排水口。
活性炭吸附塔设计静压损失小于100mmAq,吸附层为上下开口设计,方便维护及更换活性炭。活性炭的更换周期为1-3个月作用,具体更换时间还是要根据废气浓度确定。
该废气处理设备去除废气的效率高、处理量大、运行效果稳定、设备占地少、滤料截污容量大,原材料使用寿命长,节约能源,经济效益好。
万川环保的废气处理方法有多种:(1)燃烧法 包括高温燃烧和催化燃烧,前者需要附加燃料燃 烧,因此,使用该法时要考虑回收利用热能;催化燃烧能耗低,但在工作初期,需用电加热将废气加热到起燃温度,故对于频繁开停车的场合不合适。
考虑到高温燃烧法回收的热量超过生产所需的热能,故并不合适。而直接采用催化燃烧投资太大。
(2)吸收法 即采用适当的吸收剂(如柴油、煤油、水等介质)在吸收塔内进行吸收,吸收到一定浓度后进行溶剂与吸收液的分离,溶剂回收,吸收液重新使用或另行处理,采用这种方法的关键是吸收剂的选择。由于溶剂与吸收剂的分离较为困难,因此其应用受到了一定的限制。
(3)活性炭吸附法 采用多孔活性炭或活性炭纤维吸附有机废气,饱和后用低压蒸汽再生,再生时排出溶剂废气经冷凝、水分离后回收溶剂,适用于不连续的处理过程,特别对低浓度有机废气中的溶剂回收有很好的效果。(4)冷凝法 主要利用冷介质对高温有机废气蒸汽进行处理,可有效回收溶剂。
处理效果的好坏与冷媒的温度有关,处理效率较其他方法相对较低,适用高浓度废气的处理。 一般通风处里做就行了。
1、处理工业废气、集尘等比较好的环保设备是洗涤塔。在可浮动填料层气体净化器的基础上改进而产生的,广泛应用于工业废气净化、除尘等方面的前处理,净化效果很好。洗涤塔主要应用于空气污染防治工程、集尘处理系统工程及油烟处理管道抽风等工程。
2、燃烧法 。本法亦称为热氧化法、热力燃烧法,主要用于高浓度VOCs废气的净化。对于自身不能燃烧的中低浓度尾气,通常需助燃剂或加热,能耗大,运行成本比催化燃烧法高10倍以上;运行技术要求高,不易控制与掌握。此法在国内基本上未获推广,仅有少数厂家引进国外治理设备运用于较高浓度和温度的制罐印铁业废气治理中,但终因能耗大及运行不稳定,难以正常运转。
目前处理有机废气的方法主要有吸附法、催化燃烧法、活性炭吸附+催化燃烧法等。考虑到方法的可行性、运行费用、设备投资费用、以及二次污染等问题应选用适当的处理办法。
第二次世界大战前,合成气主要是以煤为原料生产的;战后,主要采用含氢更高的液态烃(石油加工馏分)或气态烃(天然气)作原料。
1970年代以来,煤气化法又受到重视,新技术及各种新的大型装置相继出现,显示出煤在合成气原料中的比重今后将有可能增长,但主要从烃类生产合成气,所用方法主要有蒸汽转化和部分氧化两种。 主要反应为:主要工艺参数是温度、压力和水蒸气配比。
由于此反应是较强的吸热反应,故提高温度可使平衡常数增大,反应趋于完全。压力升高会降低平衡转化率。
但由于天然气本身带压,合成气在后处理及合成反应中也需要一定压力,在转化以前将天然气加压又比转化后加压经济上有利,因此普遍采用加压操作,同时增加水蒸气用量以提高甲烷转化率。高水蒸气用量也可防止催化剂上积炭。
除上述主要反应外,还有下列反应发生:此两反应均为放热反应。在温度 800~820℃、压力2.5~3.5MPa、H2O/C摩尔比3.5时,转化气组成(体积%)为:CH410、CO10、CO210、H269、N21。
为在工业上实现天然气蒸汽转化反应,可采用连续转化和间歇转化两种方法。①连续蒸汽转化流程 这是现有合成气的主要生产方法(图1)。
在天然气中配以0.25%~0.5%的氢气,加热到380~400℃时,进入装填有钴钼加氢催化剂和氧化锌脱硫剂的脱硫罐,脱去硫化氢及有机硫,使总硫含量降至0.5ppm以下。原料气配入水蒸气后于 400℃下进入转化炉对流段,进一步预热到 500~520℃,然后自上而下进入各支装有镍催化剂的转化管,在管内继续被加热,进行转化反应,生成合成气。
转化管置于转化炉中,由炉顶或侧壁所装的烧嘴燃烧天然气供热(见天然气蒸汽转化炉)。转化管要承受高温和高压,因此需采用离心浇铸的含25%铬和20%镍的高合金不锈钢管。
连续转化法虽需采用这种昂贵的转化管,但总能耗较低,是技术经济上较优越的生产合成气的方法。合成气②间歇蒸汽转化流程 亦称蓄热式蒸汽转化法。
采用周期性间断加热来补充天然气转化过程所需的反应热(图2)。过程可分为两个阶段:首先是吹风(升温、蓄热)阶段:一部分天然气首先作为燃料与过量空气在燃烧炉内进行完全氧化反应,产生1300℃左右的高温烟气,经第一、二蓄热炉进入转化炉,从上而下穿过催化剂层,使催化剂吸收一部分热量。
同时,烟气中的残余氧与催化剂中的金属镍发生氧化反应放出大量的热,进一步提高床层温度。烟气从转化炉底部出来时约850℃左右,经回收热量后放空。
然后是制气阶段:作为原料的天然气与水蒸气(如生产合成氨则另加空气)经蓄热炉预热到950℃左右,进入催化剂床层进行蒸汽转化反应。从催化剂床层出来的气体,温度约 850℃左右,同样经回收热量后,存入合成气气柜。
中国曾采用间歇蒸汽转化炉,建设了一批小型合成氨厂,这些厂不用昂贵的合金钢转化管,其主要设备为耐火材料衬里的圆筒型转化炉,结构简单,建设费用低廉。缺点是常压操作,设备庞大,占地多,操作费用较高。
国际上还有用此法生产城市煤气的。 是50年代英国卜内门化学工业公司开发的,1959年建成第一座工厂。
此法主要反应为:在许多方面与天然气蒸汽转化相似。C/H比较高,更因其中除烷烃外,还有芳烃甚至少量烯烃,易生成炭而析出,因此必须采用抗析炭的催化剂。
一般仍采用镍催化剂,而以氧化钾为助催化剂,氧化镁为载体。轻质油中含硫一般较天然气为高,而此催化剂对硫又很敏感,因此在蒸汽转化前,需先严格脱硫,并同时加氢。
裂化轻油脱硫十分困难,极少用来制取合成气。用来制合成气的是直馏轻质油。
由于轻质油价格较高,又有上述不利之处,因此只有在缺少天然气供应的地区,才发展以轻油原料的合成气生产。部分氧化 天然气或轻质油蒸汽转化的主要反应为强吸热反应,反应所需热量由反应管外燃烧天然气或其他燃料供给,而部分氧化法则是把管内外反应合为一体。
本法可不预脱硫,反应器结构材料比蒸汽转化法便宜。此外,更主要的优点是不择原料,几乎从天然气到渣油的任何液态或气态烃都能适用。
加入不足量的氧气,使部分甲烷燃烧为二氧化碳和水:此反应为强放热反应。在高温及水蒸气存在下,二氧化碳及水蒸气可与其他未燃烧甲烷发生吸热反应:所以主要产物为一氧化碳和氢气,而燃烧最终产物二氧化碳不多。
反应过程中为防止炭析出,需补加一定量的水蒸气。这样做同时也加强了水蒸气与甲烷的反应。
天然气部分氧化可以在催化剂的存在下进行,也可以不用催化剂。①非催化部分氧化 天然气、氧、水蒸气在3.0MPa或更高的压力下,进入衬有耐火材料的转化炉内进行部分燃烧,温度高达1300~1400℃,出炉气体组成(体积%)约为:CO25、CO42、H252、CH40.5。
反应器用自热绝热式。②催化部分氧化 使用脱硫后的天然气与一定量的氧或富氧空气以及水蒸气在镍催化剂下进行反应。
当催化床层温度约900~1000℃、操作压力3.0MPa时,出转化炉气体组成(体积%)约为: CO27.5、CO25.5 、H267、CH4<0.5。反应器也采用自热绝热式,热效率较高。
反应温度较非催化部分氧化法低。 各种重油,包括常压渣油、减压。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.702秒