一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,最常用的方法就是设定一个全局的阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。将大于T的像素群的像素值设定为白色(或者黑色),小于T的像素群的像素值设定为黑色(或者白色)。
全局二值化,在表现图像细节方面存在很大缺陷。为了弥补这个缺陷,出现了局部二值化方法。
局部二值化的方法就是按照一定的规则将整幅图像划分为N个窗口,对这N个窗口中的每一个窗口再按照一个统一的阈值T将该窗口内的像素划分为两部分,进行二值化处理。 局部二值化也有一个缺陷。这个缺陷存在于那个统一阈值的选定。这个阈值是没有经过合理的运算得来,一般是取该窗口的平局值。这就导致在每一个窗口内仍然出现的是全局二值化的缺陷。为了解决这个问题,就出现了局部自适应二值化方法。
局部自适应二值化,该方法就是在局部二值化的基础之上,将阈值的设定更加合理化。该方法的阈值是通过对该窗口像素的平均值E,像素之间的差平方P,像素之间的均方根值Q等各种局部特征,设定一个参数方程进行阈值的计算,例如:T=a*E+b*P+c*Q,其中a,b,c是自由参数。这样得出来的二值化图像就更能表现出二值化图像中的细节。
一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,最常用的方法就是设定一个全局的阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。将大于T的像素群的像素值设定为白色(或者黑色),小于T的像素群的像素值设定为黑色(或者白色)。
全局二值化,在表现图像细节方面存在很大缺陷。为了弥补这个缺陷,出现了局部二值化方法。
局部二值化的方法就是按照一定的规则将整幅图像划分为N个窗口,对这N个窗口中的每一个窗口再按照一个统一的阈值T将该窗口内的像素划分为两部分,进行二值化处理。 局部二值化也有一个缺陷。这个缺陷存在于那个统一阈值的选定。这个阈值是没有经过合理的运算得来,一般是取该窗口的平局值。这就导致在每一个窗口内仍然出现的是全局二值化的缺陷。为了解决这个问题,就出现了局部自适应二值化方法。
局部自适应二值化,该方法就是在局部二值化的基础之上,将阈值的设定更加合理化。该方法的阈值是通过对该窗口像素的平均值E,像素之间的差平方P,像素之间的均方根值Q等各种局部特征,设定一个参数方程进行阈值的计算,例如:T=a*E+b*P+c*Q,其中a,b,c是自由参数。这样得出来的二值化图像就更能表现出二值化图像中的细节。
1。把图像重新symbolize,使用classify分成两种类型,如:0-126,126-255。(把图象二值化), 在图象上鼠标右击,选取properties,在选symbolgy标签,在show中选classified,classes等于2。
2.在arcCatalog中新建shp文件(分几层建几个,有点、线、多边形、多点四种类型),将图象和SHP文件一起加入到ARCMAP中,对SHP文件进行编辑,此时可以激活arcscan,进行矢量化。
后面我们的数字化工作是对这个校准后的影像进行操作的。
通过上面的操作我们的数据已经完成了配准工作,我们将使用这些配准后的影像进行分层矢量化。
图像二值化的目的是最大限度的将图象中感兴趣的部分保留下来,在很多情况下,也是进行图像分析、特征提取与模式识别之前的必要的图像预处理过程。这个看似简单的问题,在过去的四十年里受到国内外学者的广泛关注,产生了数以百计的阈值选取方法,但如同其他图像分割算法一样,没有一个现有方法对各种各样的图像都能得到令人满意的结果。
本文针对几种经典而常用的二值发放进行了简单的讨论并给出了其vb.net 实现。
1、P-Tile法
Doyle于1962年提出的P-Tile (即P分位数法)可以说是最古老的一种阈值选取方法。该方法根据先验概率来设定阈值,使得二值化后的目标或背景像素比例等于先验概率,该方法简单高效,但是对于先验概率难于估计的图像却无能为力。
2、OTSU 算法(大津法)
OSTU算法可以说是自适应计算单阈值(用来转换灰度图像为二值图像)的简单高效方法。1978 OTSU年提出的最大类间方差法以其计算简单、稳定有效,一直广为使用。
3、迭代法(最佳阀值法)
(1). 求出图象的最大灰度值和最小灰度值,分别记为Zl和Zk,令初始阈值为:
(2). 根据阈值TK将图象分割为前景和背景,分别求出两者的平均灰度值Z0和ZB:
式中,Z(i,j)是图像上(i,j)点的象素值,N(i,j)是(i,j)点的权值,一般取1。
(3). 若TK=TK+1,则所得即为阈值,否则转2,迭代计算。
4、一维最大熵阈值法
它的思想是统计图像中每一个灰度级出现的概率 ,计算该灰度级的熵 ,假设以灰度级T分割图像,图像中低于T灰度级的像素点构成目标物体(O),高于灰度级T的像素点构成背景(B),那么各个灰度级在本区的分布概率为:
O区: i=1,2……,t
B区: i=t+1,t+2……L-1
上式中的 ,这样对于数字图像中的目标和背景区域的熵分别为:
对图像中的每一个灰度级分别求取W=H0 +HB,选取使W最大的灰度级作为分割图像的阈值,这就是一维最大熵阈值图像分割法。
二值化简介
方法:
1、全局二值化
2、局部自适应二值化
应用
一幅图像包括目标物体、背景还有噪声,要想从多值 二值化的数字图像中直接提取出目标物体,最常用的方法就是设定一个阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。这是研究灰度变换的最特殊的方法,称为图像的二值化(BINARIZATION)。 图像的二值化,就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的只有黑和白的视觉效果。
1、局二值化
一幅图像包括目标物体、背景还有噪声,要想从多值的数字图像中直接提取出目标物体,最常用的方法就是设定一个全局的阈值T,用T将图像的数据分成两部分:大于T的像素群和小于T的像素群。将大于T的像素群的像素值设定为白色(或者黑色),小于T的像素群的像素值设定为黑色(或者白色)。 全局二值化,在表现图像细节方面存在很大缺陷。为了弥补这个缺陷,出现了局部二值化方法。 局部二值化的方法就是按照一定的规则将整幅图像划分为N个窗口,对这N个窗口中的每一个窗口再按照一个统一的阈值T将该窗口内的像素划分为两部分,进行二值化处理。
2、部自适应二值化
局部二值化也有一个缺陷。这个缺陷存在于那个统一阈值的选定。这个阈值是没有经过合理的运算得来,一般是取该窗口的平局值。这就导致在每一个窗口内仍然出现的是全局二值化的缺陷。为了解决这个问题,就出现了局部自适应二值化方法。 局部自适应二值化,该方法就是在局部二值化的基础之上,将阈值的设定更加合理化。该方法的阈值是通过对该窗口像素的平均值E,像素之间的差平方P,像素之间的均方根值Q等各种局部特征,设定一个参数方程进行阈值的计算,例如:T=a*E+b*P+c*Q,其中a,b,c是自由参数。这样得出来的二值化图像就更能表现出二值化图像中的细节。
编辑本段应用
二值化是图像处理的基本操作,任何图像处理基本离不开二值化的操作。其应用非常广泛。
(转载自百度百科--》二值化)
图像的二值化的基本原理
图像的二值化处理就是将图像上的点的灰度置为0或255,也就是将整个图像呈现出明显的黑白效果。即将256个亮度等级的灰度图像通过适当的阈值选取而获得仍然可以反映图像整体和局部特征的二值化图像。在数字图像处理中,二值图像占有非常重要的地位,特别是在实用的图像处理中,以二值图像处理实现而构成的系统是很多的,要进行二值图像的处理与分析,首先要把灰度图像二值化,得到二值化图像,这样子有利于在对图像做进一步处理时,图像的集合性质只与像素值为0或255的点的位置有关,不再涉及像素的多级值,使处理变得简单,而且数据的处理和压缩量小。为了得到理想的二值图像,一般采用封闭、连通的边界定义不交叠的区域。所有灰度大于或等于阈值的像素被判定为属于特定物体,其灰度值为255表示,否则这些像素点被排除在物体区域以外,灰度值为0,表示背景或者例外的物体区域。如果某特定物体在内部有均匀一致的灰度值,并且其处在一个具有其他等级灰度值的均匀背景下,使用阈值法就可以得到比较的分割效果。如果物体同背景的差别表现不在灰度值上(比如纹理不同),可以将这个差别特征转换为灰度的差别,然后利用阈值选取技术来分割该图像。动态调节阈值实现图像的二值化可动态观察其分割图像的具体结果。
固定阈值二值化测量方法有什么优点
苯橡胶的混炼多采用两段混炼,因为两段之间的冷却有助于碳黑的分散,丁苯橡胶混炼的关键是使碳黑良好分散,为此总的原则是软化剂应在碳黑投入并 已在生胶中分散后经过一定时间再加入,软化剂提前加入或在碳黑凝胶形成之前加入,易使碳黑—软化剂结块,胶料物理性能下降(15~20%),但是软化剂在 碳黑完全分散后加入,也会使胶料破碎,延长混炼时间,降低混炼效率,因此一般以在密炼室中尚有1/5碳黑未吸收和分散时投入软化剂为宜,这样既容易混合也 不使胶料打滑和破碎,胶料硫化胶拉伸强度可提高2~2.5Mpa,耐磨性提高7%。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.377秒