1、时间序列 取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则我们称过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。
2、宽平稳时间序列的定义:设时间序列 ,对于任意的 , 和 ,满足: 则称 宽平稳。 3、Box-Jenkins方法是一种理论较为完善的统计预测方法。
他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方法。使ARMA模型的建立有了一套完整、正规、结构化的建模方法,并且具有统计上的完善性和牢固的理论基础。
4、ARMA模型三种基本形式:自回归模型(AR:Auto-regressive),移动平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。 (1) 自回归模型AR(p):如果时间序列 满足 其中 是独立同分布的随机变量序列,且满足: , 则称时间序列 服从p阶自回归模型。
或者记为 。 平稳条件:滞后算子多项式 的根均在单位圆外,即 的根大于1。
(2) 移动平均模型MA(q):如果时间序列 满足 则称时间序列 服从q阶移动平均模型。或者记为 。
平稳条件:任何条件下都平稳。 (3) ARMA(p,q)模型:如果时间序列 满足 则称时间序列 服从(p,q)阶自回归移动平均模型。
或者记为 。 特殊情况:q=0,模型即为AR(p),p=0, 模型即为MA(q)。
二、时间序列的自相关分析 1、自相关分析法是进行时间序列分析的有效方法,它简单易行、较为直观,根据绘制的自相关分析图和偏自相关分析图,我们可以初步地识别平稳序列的模型类型和模型阶数。利用自相关分析法可以测定时间序列的随机性和平稳性,以及时间序列的季节性。
2、自相关函数的定义:滞后期为k的自协方差函数为: ,则 的自相关函数为: ,其中 。当序列平稳时,自相关函数可写为: 。
3、样本自相关函数为: ,其中 ,它可以说明不同时期的数据之间的相关程度,其取值范围在-1到1之间,值越接近于1,说明时间序列的自相关程度越高。 4、样本的偏自相关函数: 其中, 。
5、时间序列的随机性,是指时间序列各项之间没有相关关系的特征。使用自相关分析图判断时间序列的随机性,一般给出如下准则: ①若时间序列的自相关函数基本上都落入置信区间,则该时间序列具有随机性; ②若较多自相关函数落在置信区间之外,则认为该时间序列不具有随机性。
6、判断时间序列是否平稳,是一项很重要的工作。运用自相关分析图判定时间序列平稳性的准则是:①若时间序列的自相关函数 在k>3时都落入置信区间,且逐渐趋于零,则该时间序列具有平稳性;②若时间序列的自相关函数更多地落在置信区间外面,则该时间序列就不具有平稳性。
7、ARMA模型的自相关分析 AR(p)模型的偏自相关函数 是以p步截尾的,自相关函数拖尾。MA(q)模型的自相关函数具有q步截尾性,偏自相关函数拖尾。
这两个性质可以分别用来识别自回归模型和移动平均模型的阶数。ARMA(p,q)模型的自相关函数和偏相关函数都是拖尾的。
三、单位根检验和协整检验 1、单位根检验 ①利用迪基—福勒检验( Dickey-Fuller Test)和菲利普斯—佩荣检验(Philips-Perron Test),我们也可以测定时间序列的随机性,这是在计量经济学中非常重要的两种单位根检验方法,与前者不同的事,后一个检验方法主要应用于一阶自回归模型的残差不是白噪声,而且存在自相关的情况。 ②随机游动 如果在一个随机过程中, 的每一次变化均来自于一个均值为零的独立同分布,即随机过程 满足: , ,其中 独立同分布,并且: , 称这个随机过程是随机游动。
它是一个非平稳过程。 ③单位根过程 设随机过程 满足: , ,其中 , 为一个平稳过程并且 ,,。
2、协整关系 如果两个或多个非平稳的时间序列,其某个现性组合后的序列呈平稳性,这样的时间序列间就被称为有协整关系存在。这是一个很重要的概念,我们利用Engle-Granger两步协整检验法和J 很高兴回答楼主的问题 如有错误请见谅。
1、时间序列 取自某一个随机过程,如果此随机过程的随机特征不随时间变化,则我们称过程是平稳的;假如该随机过程的随机特征随时间变化,则称过程是非平稳的。
2、宽平稳时间序列的定义:设时间序列 ,对于任意的 , 和 ,满足: 则称 宽平稳。 3、Box-Jenkins方法是一种理论较为完善的统计预测方法。
他们的工作为实际工作者提供了对时间序列进行分析、预测,以及对ARMA模型识别、估计和诊断的系统方法。使ARMA模型的建立有了一套完整、正规、结构化的建模方法,并且具有统计上的完善性和牢固的理论基础。
4、ARMA模型三种基本形式:自回归模型(AR:Auto-regressive),移动平均模型(MA:Moving-Average)和混合模型(ARMA:Auto-regressive Moving-Average)。 (1) 自回归模型AR(p):如果时间序列 满足 其中 是独立同分布的随机变量序列,且满足: , 则称时间序列 服从p阶自回归模型。
或者记为 。 平稳条件:滞后算子多项式 的根均在单位圆外,即 的根大于1。
(2) 移动平均模型MA(q):如果时间序列 满足 则称时间序列 服从q阶移动平均模型。或者记为 。
平稳条件:任何条件下都平稳。 (3) ARMA(p,q)模型:如果时间序列 满足 则称时间序列 服从(p,q)阶自回归移动平均模型。
或者记为 。 特殊情况:q=0,模型即为AR(p),p=0, 模型即为MA(q)。
二、时间序列的自相关分析 1、自相关分析法是进行时间序列分析的有效方法,它简单易行、较为直观,根据绘制的自相关分析图和偏自相关分析图,我们可以初步地识别平稳序列的模型类型和模型阶数。利用自相关分析法可以测定时间序列的随机性和平稳性,以及时间序列的季节性。
2、自相关函数的定义:滞后期为k的自协方差函数为: ,则 的自相关函数为: ,其中 。当序列平稳时,自相关函数可写为: 。
3、样本自相关函数为: ,其中 ,它可以说明不同时期的数据之间的相关程度,其取值范围在-1到1之间,值越接近于1,说明时间序列的自相关程度越高。 4、样本的偏自相关函数: 其中, 。
5、时间序列的随机性,是指时间序列各项之间没有相关关系的特征。使用自相关分析图判断时间序列的随机性,一般给出如下准则: ①若时间序列的自相关函数基本上都落入置信区间,则该时间序列具有随机性; ②若较多自相关函数落在置信区间之外,则认为该时间序列不具有随机性。
6、判断时间序列是否平稳,是一项很重要的工作。运用自相关分析图判定时间序列平稳性的准则是:①若时间序列的自相关函数 在k>3时都落入置信区间,且逐渐趋于零,则该时间序列具有平稳性;②若时间序列的自相关函数更多地落在置信区间外面,则该时间序列就不具有平稳性。
7、ARMA模型的自相关分析 AR(p)模型的偏自相关函数 是以p步截尾的,自相关函数拖尾。MA(q)模型的自相关函数具有q步截尾性,偏自相关函数拖尾。
这两个性质可以分别用来识别自回归模型和移动平均模型的阶数。ARMA(p,q)模型的自相关函数和偏相关函数都是拖尾的。
三、单位根检验和协整检验 1、单位根检验 ①利用迪基—福勒检验( Dickey-Fuller Test)和菲利普斯—佩荣检验(Philips-Perron Test),我们也可以测定时间序列的随机性,这是在计量经济学中非常重要的两种单位根检验方法,与前者不同的事,后一个检验方法主要应用于一阶自回归模型的残差不是白噪声,而且存在自相关的情况。 ②随机游动 如果在一个随机过程中, 的每一次变化均来自于一个均值为零的独立同分布,即随机过程 满足: , ,其中 独立同分布,并且: , 称这个随机过程是随机游动。
它是一个非平稳过程。 ③单位根过程 设随机过程 满足: , ,其中 , 为一个平稳过程并且 ,,。
2、协整关系 如果两个或多个非平稳的时间序列,其某个现性组合后的序列呈平稳性,这样的时间序列间就被称为有协整关系存在。这是一个很重要的概念,我们利用Engle-Granger两步协整检验法和J 很高兴回答楼主的问题 如有错误请见谅。
时间序列建模基本步骤是:
①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。
②根据动态数据作相关图,进行相zhidao关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。
③辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。对于短的或简单的时专间序列,可用趋势模型属和季节模型加上误差来进行拟合。对于平稳时间序列,可用通用ARMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、滑动平均模型或组合-ARMA模型等来进行拟合。当观测值多于50个时一般都采用ARMA模型。对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。
(一)指标分析法
通过时间序列的分析指标来揭示现象的发展变化状况和发展变化程度。
(二)构成因素分析法
通过对影响时间序列的构成因素进行分解分析,揭示现象随时间变化而演变的规律。
利用数据挖掘进行数据分析常用的方法主要有分类、回归分析、聚类、关联规则、特征、变化和偏差分析、Web页挖掘等, 它们分别从不同的角度对数据进行挖掘。
1、分类 分类是找出数据库中一组数据对象的共同特点并按照分类模式将其划分为不同的类,其目的是通过分类模型,将数据库中的数据项映射到某个给定的类别。它可以应用到客户的分类、客户的属性和特征分析、客户满意度分析、客户的购买趋势预测等,如一个汽车零售商将客户按照对汽车的喜好划分成不同的类,这样营销人员就可以将新型汽车的广告手册直接邮寄到有这种喜好的客户手中,从而大大增加了商业机会。
2、回归分析 回归分析方法反映的是事务数据库中属性值在时间上的特征,产生一个将数据项映射到一个实值预测变量的函数,发现变量或属性间的依赖关系,其主要研究问题包括数据序列的趋势特征、数据序列的预测以及数据间的相关关系等。它可以应用到市场营销的各个方面,如客户寻求、保持和预防客户流失活动、产品生命周期分析、销售趋势预测及有针对性的促销活动等。
3、聚类 聚类分析是把一组数据按照相似性和差异性分为几个类别,其目的是使得属于同一类别的数据间的相似性尽可能大,不同类别中的数据间的相似性尽可能小。它可以应用到客户群体的分类、客户背景分析、客户购买趋势预测、市场的细分等。
4、关联规则 关联规则是描述数据库中数据项之间所存在的关系的规则,即根据一个事务中某些项的出现可导出另一些项在同一事务中也出现,即隐藏在数据间的关联或相互关系。在客户关系管理中,通过对企业的客户数据库里的大量数据进行挖掘,可以从大量的记录中发现有趣的关联关系,找出影响市场营销效果的关键因素,为产品定位、定价与定制客户群,客户寻求、细分与保持,市场营销与推销,营销风险评估和诈骗预测等决策支持提供参考依据。
5、特征 特征分析是从数据库中的一组数据中提取出关于这些数据的特征式,这些特征式表达了该数据集的总体特征。如营销人员通过对客户流失因素的特征提取,可以得到导致客户流失的一系列原因和主要特征,利用这些特征可以有效地预防客户的流失。
6、变化和偏差分析 偏差包括很大一类潜在有趣的知识,如分类中的反常实例,模式的例外,观察结果对期望的偏差等,其目的是寻找观察结果与参照量之间有意义的差别。在企业危机管理及其预警中,管理者更感兴趣的是那些意外规则。
意外规则的挖掘可以应用到各种异常信息的发现、分析、识别、评价和预警等方面。 7、Web页挖掘 随着Internet的迅速发展及Web 的全球普及, 使得Web上的信息量无比丰富,通过对Web的挖掘,可以利用Web 的海量数据进行分析,收集政治、经济、政策、科技、金融、各种市场、竞争对手、供求信息、客户等有关的信息,集中精力分析和处理那些对企业有重大或潜在重大影响的外部环境信息和内部经营信息,并根据分析结果找出企业管理过程中出现的各种问题和可能引起危机的先兆,对这些信息进行分析和处理,以便识别、分析、评价和管理危机。
时间序列预测法的有以下几个步骤。
第一步,收集历史资料,加以整理,编成时间序列,并根据时间序列绘成统计图。时间序列分析通常是把各种可能发生作用的因素进行分类,传统的分类方法是按各种因素的特点或影响效果进行分类:
①长期趋势;
②季节变动;
③循环变动;
④不规则变动。
第二步,分析时间序列。
时间序列中的每一时期的数值都是由许许多多不同的因素同时发生作用后的综合结果。
第三步,求时间序列的长期趋势(T)、季节变动(S)和不规则变动(I)的值,并选定近似的数学模式来代表它们。对于数学模式中的诸未知参数,使用合适的技术方法求出其值。
第四步,利用时间序列资料求出长期趋势、季节变动和不规则变动的数学模型后,就可以利用它来预测未来的长期趋势值T和季节变动值S,在可能的情况下预测不规则变动值I。然后用以下模式计算出未来的时间序列的预测值Y。
加法模式:T+S+I=Y乘法模式:T乘以S乘以I=Y
如果不规则变动的预测值难以求得,就只求长期趋势和季节变动的预测值,以两者相乘之积或相加之和为时间序列的预测值。如果经济现象本身没有季节变动或不需预测分季分月的资料,则长期趋势的预测值就是时间序列的预测值,即T=Y。但要注意这个预测值只反映现象未来的发展趋势,即使很准确的趋势线在按时间顺序的观察方面所起的作用本质上也只是一个平均数的作用,实际值将围绕着它上下波动。
去百度文库,查看完整内容>
内容来自用户:黄剑
对于预测,有定性和定量两类方法,定性的方法主要是作一些趋势性或转折点的判定。常用的方法有专家座谈会法,德尔菲法等。常用的定量预测方法有两种,一种是回归分析法,另一种常用方法就是时间序列分析法。这一章主要介绍有关时间序列分析法的有关内容。
所谓时间序列就是一组按照一定的时间间隔排列的一组数据。这一组数据可以表示各种各样的含义的数值,如对某种产品的需求量、产量,销售额,等。其时间间隔可以是任意的时间单位,如小时、日、周、月等。通常,对于这些量的预测,由于很难确定它与其他因变量的关系,或收集因变量的数据非常困难,这时我们就不能采用回归分析方法进行预测,或者说,有时对预测的精度要求不是特别高,这时我们都可以使用时间序列分析方法来进行预测。
当然,时间序列分析法并非只是一种简单的预测分析方法,其实,基本的时间序列分析法确实很简单,但是也有一些非常复杂的时间序列分析方法。
采用时间序列分析进行预测时需要用到一系列的模型,这种模型统称为时间序列模型。在使用这种时间序列模型时,总是假定某一种数据变化模式或某一种组合模式总是会重复发生的。因此可以首先识别出这种模式,然后采用外推的方式就可以进行预测了。
1S季节系数实际上就是:对于1.MA=T*C自相关的含义类似于相关关系,自相关系数类似于相关系数,只不过在自相关关系中,它描述的不是两个不同的量之间的关系,而是描述的同一个变量在不同时间之间的相关关系
时间序列预测方法根据对资料分析方法的不同,可分为:简单序时平均数法、加权序时平均数法、移动平均法、加权移动平均法、趋势预测法、指数平滑法、季节性趋势预测法、市场寿命周期预测法等。
1、简单序时平均数法只能适用于事物变化不大的趋势预测。如果事物呈现某种上升或下降的趋势,就不宜采用此法。
2、加权序时平均数法就是把各个时期的历史数据按近期和远期影响程度进行加权,求出平均值,作为下期预测值。
3、简单移动平均法适用于近期期预测。当产品需求既不快速增长也不快速下降,且不存在季节性因素时,移动平均法能有效地消除预测中的随机波动。
4、加权移动平均法即将简单移动平均数进行加权计算。在确定权数时,近期观察值的权数应该大些,远期观察值的权数应该小些。
5、指数平滑法即根用于中短期经济发展趋势预测,所有预测方法中,指数平滑是用得最多的一种。
6、季节趋势预测法根据经济事物每年重复出现的周期性季节变动指数,预测其季节性变动趋势。
7、市场寿命周期预测法,适用于对耐用消费品的预测。这种方法简单、直观、易于掌握。
扩展资料:
时间序列预测法的特征
1、时间序列分析法是根据过去的变化趋势预测未来的发展,前提是假定事物的过去延续到未来。运用过去的历史数据,通过统计分析,进一步推测未来的发展趋势。不会发生突然的跳跃变化,是以相对小的步伐前进;过去和当前的现象,可能表明现在和将来活动的发展变化趋向。
2.时间序列数据变动存在着规律性与不规律性
时间序列中的每个观察值大小,是影响变化的各种不同因素在同一时刻发生作用的综合结果。从这些影响因素发生作用的大小和方向变化的时间特性来看,这些因素造成的时间序列数据的变动分为四种类型:趋势性、周期性、随机性、综合性。
参考资料来源:百度百科-时间序列预测法
参考资料来源:百度百科-指数平滑法
参考资料来源:百度百科-简单移动平均法
用随机过程理论和数理统计学方法,研究随机数据序列所遵从的统计规律,以用于解决实际问题。由于在多数问题中,随机数据是依时间先后排成序列的,故称为时间序列。它包括一般统计分析(如自相关分析、谱分析等),统计模型的建立与推断,以及关于随机序列的最优预测、控制和滤波等内容。经典的统计分析都假定数据序列具有独立性,而时间序列分析则着重研究数据序列的相互依赖关系。后者实际上是对离散指标的随机过程的统计分析,所以又可看作是随机过程统计的一个组成部分。例如,用x(t)表示某地区第t个月的降雨量,{x(t),t=1,2,…}是一时间序列。对t=1,2,…,T,记录到逐月的降雨量数据x(1),x(2),…,x(T),称为长度为T的样本序列。依此即可使用时间序列分析方法,对未来各月的雨量x(T+l)(l=1,2,…)进行预报。时间序列分析在第二次世界大战前就已应用于经济预测。二次大战中和战后,在军事科学、空间科学和工业自动化等部门的应用更加广泛。
就数学方法而言,平稳随机序列(见平稳过程)的统计分析,在理论上的发展比较成熟,从而构成时间序列分析的基础。 一个时间序列可看成各种周期扰动的叠加,频域分析就是确定各周期的振动能量的分配,这种分配称为“谱”,或“功率谱”。因此频域分析又称谱分析。谱分析中的一个重要统计量是 ,称为序列的周期图。当序列含有确定性的周期分量时,通过I(ω)的极大值点寻找这些分量的周期,是谱分析的重要内容之一。在按月记录的降雨量序列中,序列x(t)就可视为含有以12为周期的确定分量,所以序列x(t)可以表示为 ,它的周期图I(ω)处有明显的极大值。
当平稳序列的谱分布函数F(λ)具有谱密度ƒ(λ)(即功率谱)时,可用(2π)-1I(λ)去估计ƒ(λ),它是ƒ(λ)的渐近无偏估计。如欲求ƒ(λ)的相合估计(见点估计),可用I(ω)的适当的平滑值去估计ƒ(λ),常用的方法为谱窗估计即取ƒ(λ)的估计弮(λ)为 ,式中wt(ω)称为谱窗函数。谱窗估计是实际应用中的重要方法之一。谱分布F(λ)本身的一种相合估计可由I(ω)的积分直接获得,即 。 研究以上各种估计量的统计性质,改进估计方法,是谱分析的重要内容。 如果时间序列x(t)可表示为确定性分量φ(t)与随机性分量ω(t)之和,根据样本值x(1),x(2),…,x(T)来估计φ(t)及分析ω(t)的统计规律,属于时间序列分析中的回归分析问题。它与经典回归分析不同的地方是,ω(t)一般不是独立同分布的,因而在此必须涉及较多的随机过程知识。当φ(t)为有限个已知函数的未知线性组合时,即 ,式中ω(t)是均值为零的平稳序列,α1,α2,…,αs是未知参数,φ1(t),φ2(t),…,φs(t)是已知的函数,上式称为线性回归模型,它的统计分析已被研究得比较深入。前面叙述的降雨量一例,便可用此类模型描述。回归分析的内容包括:当ω(t)的统计规律已知时,对参数α1,α2,…,αs进行估计,预测x(T+l)之值;当ω(t)的统计规律未知时,既要估计上述参数,又要对ω(t)进行统计分析,如谱分析、模型分析等。在这些内容中,一个重要的课题是:在相当广泛的情况下,证明 α1,α2,…,αs的最小二乘估计,与其线性最小方差无偏估计一样,具有相合性和渐近正态分布性质。最小二乘估计姙j(1≤j≤s)不涉及ω(t)的统计相关结构,是由数据x(1),x(2),…,x(T)直接算出,由此还可得(t)进行时间序列分析中的各种统计分析,以代替对ω(t)的分析。在理论上也已证明,在适当的条件下,这样的替代具有满意的渐近性质。由于ω(t)的真值不能直接量测,这些理论结果显然有重要的实际意义。这方面的研究仍在不断发展。
时间序列分析中的最优预测、控制与滤波等方面的内容见平稳过程条。多维时间序列分析的研究有所进展,并应用到工业生产自动化及经济分析中。此外非线性模型统计分析及非参数统计分析等方面也逐渐引起人们的注意。
时间序列建模基本步骤是:①用观测、调查、统计、抽样等方法取得被观测系统时间序列动态数据。
②根据动态数据作相关图,进行相关分析,求自相关函数。相关图能显示出变化的趋势和周期,并能发现跳点和拐点。
跳点是指与其他数据不一致的观测值。如果跳点是正确的观测值,在建模时应考虑进去,如果是反常现象,则应把跳点调整到期望值。
拐点则是指时间序列从上升趋势突然变为下降趋势的点。如果存在拐点,则在建模时必须用不同的模型去分段拟合该时间序列,例如采用门限回归模型。
③辨识合适的随机模型,进行曲线拟合,即用通用随机模型去拟合时间序列的观测数据。对于短的或简单的时间序列,可用趋势模型和季节模型加上误差来进行拟合。
对于平稳时间序列,可用通用ARMA模型(自回归滑动平均模型)及其特殊情况的自回归模型、滑动平均模型或组合-ARMA模型等来进行拟合。当观测值多于50个时一般都采用ARMA模型。
对于非平稳时间序列则要先将观测到的时间序列进行差分运算,化为平稳时间序列,再用适当模型去拟合这个差分序列。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.804秒