1)热裂: 裂纹外形弯弯曲曲,断口很不规则 呈藕断丝连状,而且表面较宽,越到里面越窄,属热裂 其机理是:钢水注入型腔后开始冷凝,当结晶骨架已经形成并开始线收缩后.由于此时内部钢水并未完成凝固成固态 使收缩受阻,铸件中就会产生应力或塑性变形.当它们超过在此高温下的材质强度极限时,铸件就会开裂。
(1)、热裂纹的形貌和特征 热裂纹是铸件在凝固末期或凝固后不久尚处于强度和塑性很低状态下,因铸件固态收缩受阻而引起的裂纹。热裂纹是铸钢件、可锻铸铁件和某些轻合金铸件生产中常见的铸造缺陷之一。
热裂纹在晶界萌生并沿晶界扩展,其形状粗细不均,曲折而不规则。裂纹的表面呈氧化色,无金属光泽。
铸钢件裂纹表面近似黑色,而铝合金则呈暗灰色。外裂纹肉眼可见,可根据外形和断口特征与冷裂区分。
热裂纹又可分为外裂纹和内裂纹。在铸件表面可以看到的热裂纹称为外裂纹。
外裂纹常产生在铸件的拐角处、截面厚度急剧变化处或局部疑固缓慢处、容易产生应力集中的地方。其特征是表面宽内部窄,呈撕裂状。
有时断口会贯穿整个铸件断面。热裂纹的另一特征是裂纹沿晶粒边界分布。
内裂纹一般发生在铸件内部最后凝固的部位裂纹形状很不规则,断面常伴有树枝晶,通常情况下,内裂纹不会延伸到铸件表面。 (2)、热裂纹形成的原因 形成热裂纹的理论原因和实际原因很多,但根本原因是铸件的凝固方式和凝固时期铸件的热应力和收缩应力。
液体金属浇入到铸型后,热量散失主要是通过型壁,所以,凝固总是从铸件表面开始。当凝固后期出现大量的枝晶并搭接成完整的骨架时,固态收缩开始产生。
但此时枝晶之间还存在一层尚未凝固舶液体金属薄膜(液膜),如果铸件收缩不受任何阻碍,那么枝晶骨架可以自由收缩,不受力的作用。当枝晶骨架的收缩受到砂型或砂芯等的阻碍时,不能自由收缩就会产生拉应力。
当拉应力超过其材料强度极限时,枝晶之间就会产生开裂。如果枝晶骨架被拉开的速度很慢,而且被拉开部分周围有足够的金属液及时流入拉裂处并补充,那么铸件不会产生热裂纹。
相反,如果开裂处得不到金属液的补充,铸件就会出现热裂纹。 由此可知,宽凝固温度范围,糊状或海绵网络状凝固方式的合金最容易产生热裂。
随着凝固温度范围的变窄,合金的热裂倾向变小,恒温凝固的共晶成分的合金最不容易形成热裂。热裂形成于铸件凝固时期,但并不意味着铸件凝固时必然产生热裂。
主要取决于铸件凝固时期的热应力和收缩应力。铸件凝固区域固相晶粒骨架中的热应力,易使铸件产生热裂或皮下热裂;外部阻碍因素造成的收缩应力,则是铸件产生热裂的主要条件。
处于凝固状态的铸件外壳,其线收缩受到砂芯、型砂、铸件表面同砂型表面摩擦力等外部因素阻碍,外壳中就会有收缩应力(拉应力),铸件热节,特别是热节处尖角所形成的外壳较薄,就成为收缩应力集中的地方,铸件最容易在这些地方产生热裂。 热裂纹产生的原因体现在工艺和铸件结构方面其中有:铸件壁厚不均匀,内角太小;搭接部位分叉太多,铸件外框、肋板等阻碍铸件正常收缩;浇冒口系统阻碍铸件正常收缩,如浇冒口靠近箱带或浇冒口之间型砂强度很高,限制了铸件的自由收缩;冒口太小或太大;合金线收缩率太大;合金中低熔点相形成元素超标,铸钢铸铁中硫、磷含量高;铸件开箱落砂过早,冷却过快。
(3)热裂纹防治法发 (a)、改善铸件结构 壁厚力求均匀,转角处应作出过渡圆角,减少应力集中现象。轮类铸件的轮辐必要时可 做成弯曲状。
(b)、提高合金材料的熔炼质量 采用精炼和除气工艺去除金属液中的氧化夹杂和气体等。控制有害杂质的含量,采用合理的熔炼工艺,防止产生冷裂纹。
(c)、采用正确的铸造工艺措施 使铸件实现同时凝固 不仅有利于防止热裂纹,也有助于防止冷裂纹。合理设置浇冒口的位置和尺寸,使铸件各部分的冷却速度尽量均匀一致,减少冷裂纹倾向。
正确确定铸件在砂型中的停留时间 砂型是一种良好的保温容器,能使铸件较厚和较薄处的温度进一步均匀化,减少它们之间的温度差,降低热应力,减少冷裂纹倾向。延长铸件在铸型内的停留时间,以免开箱过早在铸件内造成较大的内应力,而产生冷裂纹。
增加砂型、砂芯的退让性 铸件凝固后及早卸去压箱铁,松开砂箱紧固装置等,是防止由于收缩应力而使铸件产生冷裂的有效措施。大型铸件的砂型和砂芯,在浇注后可提前挖去部分型砂和芯砂,以减少它们对铸件的收缩阻力,促使铸件各部分均匀冷却。
铸件在落砂、清理和搬运过程中,应避免碰撞、挤压,防止铸件产生冷裂纹。(d)、时效热处理 铸造应力大的铸件应及时进行时效热处理,避免过大的残余应力使铸件产生冷裂纹。
必要时,铸件在切割浇冒口或焊补后,还要进行一次时效热处理 2) 冷裂纹是铸件凝固后冷却到弹性状态时,因局部铸造应力大于合金极限强度而引起的开裂。冷裂纹总是发生在冷却过程中承受拉应力的部位,特别是拉应力集中的部位。
冷裂纹与热裂纹不同,冷裂纹往往穿晶扩展到整个截面,外形呈宽度均匀细长的直线或折线状,冷裂纹的断口表面子净有金属光泽或呈轻度氧化色,裂纹走向平。
消失模铸件的热裂的避免必须要合理地调整合金成分,要严格控制钢和铁中的硫,磷含量,合理地设计铸件构造,选用同时凝结的准则,改进型(芯)砂的让步性,都是避免热裂的有效方法.消失模铸铁件的冷裂是安装渠道铸件冷却到低温处于弹性状况时所发生的热应力,缩短应力的总和,假设大于该温度下合金的强度,则发生冷裂.冷裂是在较低温度下构成的,其裂缝细微,呈连续直线状,缝内洁净,有时呈细微氧化色.壁厚不同大,形状杂乱的铸件,尤其是大而薄皮的铸件易于发生冷裂.气孔的形成:在铸件内部或表面有大小不等光滑孔,1.炉料不干,杂质多.2.浇注工件或炉前添加剂不干.3.砂型含水过多或起模修型时刷的水过多.4.型芯烘干不充分,5.浇注温度过低,浇注速度过快.缩孔大多分布在铸件厚断面处,形状不规则,孔内粗糙,这是由于结构设计不合理,壁厚相差过大,厚壁处没有防冒口和冷铁.浇注系统与冒口的位置不对,合金化学成分不合格,收缩率过大,冒口太小.。
一、铸件变形和裂纹产生的原因
1、铸件变形原因
铸件凝固过程中由于壁厚不同,冷却速度不一致,使铸件最后凝固的部位产品应力,导致铸件变形。
2、铸件裂纹原因
a、铸件凝固收缩过程中,由于各部位冷却速度不一致,导致收缩受阻,当阻力超出材料强度极限时,铸件产生裂纹;
b、钢水中杂质、有害气体量比较大时,会割裂基体,使铸件产生裂纹;
二、铸件变形和裂纹的防治方法
1、铸件变形防治方法
a、大平面铸件设置加强筋、模具上设计出反变形量;
b、铸件壁厚设计过渡不要过大;
2、铸件裂纹防治方法
a、钢水纯净度要高。使用优质的原材料;
b、避免铸件收缩受阻;
c、浇注型温不宜过低。
一、铸件变形和裂纹产生的原因1、铸件变形原因铸件凝固过程中由于壁厚不同,冷却速度不一致,使铸件最后凝固的部位产品应力,导致铸件变形.2、铸件裂纹原因a、铸件凝固收缩过程中,由于各部位冷却速度不一致,导致收缩受阻,当阻力超出材料强度极限时,铸件产生裂纹;b、钢水中杂质、有害气体量比较大时,会割裂基体,使铸件产生裂纹;二、铸件变形和裂纹的防治方法1、铸件变形防治方法a、大平面铸件设置加强筋、模具上设计出反变形量;b、铸件壁厚设计过渡不要过大;2、铸件裂纹防治方法a、钢水纯净度要高.使用优质的原材料;b、避免铸件收缩受阻;c、浇注型温不宜过低.。
热裂纹是铸件在凝固末期或凝固后不久尚处于强度和塑性很低状态下,因铸件固态收缩受阻而引起的裂纹。热裂纹是铸钢件、可锻铸铁件和某些轻合金铸件生产中常见的铸造缺陷之一。热裂纹在晶界萌生并沿晶界扩展,其形状粗细不均,曲折而不规则。裂纹的表面呈氧化色,无金属光泽。铸钢件裂纹表面近似黑色,而铝合金则呈暗灰色。外裂纹肉眼可见,可根据外形和断口特征与冷裂区分。
热裂纹又可分为外裂纹和内裂纹。在铸件表面可以看到的热裂纹称为外裂纹。外裂纹常产生在铸件的拐角处、截面厚度急剧变化处或局部疑固缓慢处、容易产生应力集中的地方。其特征是表面宽内部窄,呈撕裂状。有时断口会贯穿整个铸件断面。热裂纹的另一特征是裂纹沿晶粒边界分布。内裂纹一般发生在铸件内部最后凝固的部位裂纹形状很不规则,断面常伴有树枝晶,通常情况下,内裂纹不会延伸到铸件表面。
1. 钢在锻造过程中形成的裂纹是多种多样的,形成原因也各不相同。
2. 主要可分为原材料缺陷引起的锻造裂纹和锻造本 身引起的锻造裂纹两类。属于前者的原因有残余缩孔、钢中夹杂物等冶金缺陷;属于后者的原因有加热不当,变形不当及锻后冷却不当、未及时热处理等。有些情况下裂纹的产生可能同时含有几方面的原因。
3. 锻造变形不当引起的裂纹,最觉的是变形速度太大,钢的塑性不足以承受形压力而引起的破裂。这种裂纹往往在锻造开始阶段就发生,并迅速扩展。应及时采取措施纠正锻造工艺,并切除有裂纹的钢材或者报废锻件。
4. 另外一种是低温锻裂,在裂纹处往往有较多的低温相组织,为避免这种裂纹产生,应使钢在锻造变形过程中不发生相恋,要正确掌握和控制终锻温度。
5. 鉴别裂纹产生的原因,应首先了解工艺过程,以便找出裂纹形成的客观条件,其次应当观察裂纹本身的状态,然后再进行必要的有针对性的显微组织分析,微区成分分析。这样才能找出问题,解决问题。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:3.282秒