常用的图像特征有颜色特征、纹理特征、形状特征、空间关系特征。
一 颜色特征 (一)特点:颜色特征是一种全局特征,描述了图像或图像区域所对应的景物的表面性质。一般颜色特征是基于像素点的特征,此时所有属于图像或图像区域的像素都有各自的贡献。
由于颜色对图像或图像区域的方向、大小等变化不敏感,所以颜色特征不能很好地捕捉图像中对象的局部特征。另外,仅使用颜色特征查询时,如果数据库很大,常会将许多不需要的图像也检索出来。
颜色直方图是最常用的表达颜色特征的方法,其优点是不受图像旋转和平移变化的影响,进一步借助归一化还可不受图像尺度变化的影响,基缺点是没有表达出颜色空间分布的信息。(二)常用的特征提取与匹配方法 (1) 颜色直方图 其优点在于:它能简单描述一幅图像中颜色的全局分布,即不同色彩在整幅图像中所占的比例,特别适用于描述那些难以自动分割的图像和不需要考虑物体空间位置的图像。
其缺点在于:它无法描述图像中颜色的局部分布及每种色彩所处的空间位置,即无法描述图像中的某一具体的对象或物体。最常用的颜色空间:RGB颜色空间、HSV颜色空间。
颜色直方图特征匹配方法:直方图相交法、距离法、中心距法、参考颜色表法、累加颜色直方图法。(2) 颜色集 颜色直方图法是一种全局颜色特征提取与匹配方法,无法区分局部颜色信息。
颜色集是对颜色直方图的一种近似首先将图像从 RGB颜色空间转化成视觉均衡的颜色空间(如 HSV 空间),并将颜色空间量化成若干个柄。然后,用色彩自动分割技术将图像分为若干区域,每个区域用量化颜色空间的某个颜色分量来索引,从而将图像表达为一个二进制的颜色索引集。
在图像匹配中,比较不同图像颜色集之间的距离和色彩区域的空间关系 (3) 颜色矩 这种方法的数学基础在于:图像中任何的颜色分布均可以用它的矩来表示。此外,由于颜色分布信息主要集中在低阶矩中,因此,仅采用颜色的一阶矩(mean)、二阶矩(variance)和三阶矩(skewness)就足以表达图像的颜色分布。
(4) 颜色聚合向量 其核心思想是:将属于直方图每一个柄的像素分成两部分,如果该柄内的某些像素所占据的连续区域的面积大于给定的阈值,则该区域内的像素作为聚合像素,否则作为非聚合像素。(5) 颜色相关图 二 纹理特征 (一)特点:纹理特征也是一种全局特征,它也描述了图像或图像区域所对应景物的表面性质。
但由于纹理只是一种物体表面的特性,并不能完全反映出物体的本质属性,所以仅仅利用纹理特征是无法获得高层次图像内容的。与颜色特征不同,纹理特征不是基于像素点的特征,它需要在包含多个像素点的区域中进行统计计算。
在模式匹配中,这种区域性的特征具有较大的优越性,不会由于局部的偏差而无法匹配成功。作为一种统计特征,纹理特征常具有旋转不变性,并且对于噪声有较强的抵抗能力。
但是,纹理特征也有其缺点,一个很明显的缺点是当图像的分辨率变化的时候,所计算出来的纹理可能会有较大偏差。另外,由于有可能受到光照、反射情况的影响,从2-D图像中反映出来的纹理不一定是3-D物体表面真实的纹理。
例如,水中的倒影,光滑的金属面互相反射造成的影响等都会导致纹理的变化。由于这些不是物体本身的特性,因而将纹理信息应用于检索时,有时这些虚假的纹理会对检索造成“误导”。
在检索具有粗细、疏密等方面较大差别的纹理图像时,利用纹理特征是一种有效的方法。但当纹理之间的粗细、疏密等易于分辨的信息之间相差不大的时候,通常的纹理特征很难准确地反映出人的视觉感觉不同的纹理之间的差别。
(二)常用的特征提取与匹配方法 纹理特征描述方法分类 (1)统计方法统计方法的典型代表是一种称为灰度共生矩阵的纹理特征分析方法Gotlieb 和 Kreyszig 等人在研究共生矩阵中各种统计特征基础上,通过实验,得出灰度共生矩阵的四个关键特征:能量、惯量、熵和相关性。统计方法中另一种典型方法,则是从图像的自相关函数(即图像的能量谱函数)提取纹理特征,即通过对图像的能量谱函数的计算,提取纹理的粗细度及方向性等特征参数 (2)几何法 所谓几何法,是建立在纹理基元(基本的纹理元素)理论基础上的一种纹理特征分析方法。
纹理基元理论认为,复杂的纹理可以由若干简单的纹理基元以一定的有规律的形式重复排列构成。在几何法中,比较有影响的算法有两种:Voronio 棋盘格特征法和结构法。
(3)模型法 模型法以图像的构造模型为基础,采用模型的参数作为纹理特征。典型的方法是随机场模型法,如马尔可夫(Markov)随机场(MRF)模型法和 Gibbs 随机场模型法 (4)信号处理法 纹理特征的提取与匹配主要有:灰度共生矩阵、Tamura 纹理特征、自回归纹理模型、小波变换等。
灰度共生矩阵特征提取与匹配主要依赖于能量、惯量、熵和相关性四个参数。Tamura 纹理特征基于人类对纹理的视觉感知心理学研究,提出6种属性,即:粗糙度、对比度、方向度、线像度、规整度和粗略度。
自回归纹理模型(simultaneous auto-regressive, SAR)是马尔可夫随机场(MRF)模型的一种。
数字信号处理是把信号用数字或符号表示成序列,通过计算机或通用(专用)信号处理设备,用数值计算方法进行各种处理,达到提取有用信息便于应用的目的。例如:滤波、检测、变换、增强、估计、识别、参数提取、频谱分析等。
一般地讲,数字信号处理涉及三个步骤:
⑴模数转换(A/D转换):把模拟信号变成数字信号,是一个对自变量和幅值同时进行离散化的过程,基本的理论保证是采样定理。
⑵数字信号处理(DSP):包括变换域分析(如频域变换)、数字滤波、识别、合成等。
⑶数模转换(D/A转换):把经过处理的数字信号还原为模拟信号。通常,这一步并不是必须的。 作为DSP的成功例子有很多,如医用CT断层成像扫描仪的发明。它是利用生物体的各个部位对X射线吸收率不同的现象,并利用各个方向扫描的投影数据再构造出检测体剖面图的仪器。这种仪器中fft(快速傅里叶变换)起到了快速计算的作用。以后相继研制出的还有:采用正电子的CT机和基于核磁共振的CT机等仪器,它们为医学领域作出了很大的贡献。
信号处理的目的是:削弱信号中的多余内容;滤出混杂的噪声和干扰;或者将信号变换成容易处理、传输、分析与识别的形式,以便后续的其它处理。
主要有:地物边界跟踪法;形状特征描述与提取;地物空间关系特征描述与提取。
遥感图像解译,除了利用地物的光谱特征外,还需利用地物的形状特征和空间关系特征,因此需要提取图像的其他特征。
对于高分辨率遥感图像,可以清楚地观察到丰富的结构信息,如城市是由许多街区组成的,每个街区又由多个巨星楼房构成,其中人造地物具有明显的形状和结构特征,如建筑物、厂房、农田田埂,因此可以设法去提取这类地物的形状特征及其空间关系特征,以作为结构模式识别的依据
(1)提取简单,时间和空间复杂度低。
(2)区分能力强,对图像视觉内容相似的图像其特征描述之间也应相近,反
之,对于视觉内容不相似的图像其特征描述之间应有一定的差别。
(3)与人的视觉感知相近,对人的视觉感觉相近的图像其特征描述之间也相
近,对人的视觉感知有差别的图像其特征描述之间也有一定的差别。
(4)抗干扰能力强,鲁棒性好,对图像大小,方向不敏感,具有几何平移,
旋转不变性。
**************************************************************
如果你对这个答案有什么疑问,请追问,
另外如果你觉得我的回答对你有所帮助,请千万别忘记采纳哟!
**************************************************************
3.2 ECG特征点的提取方法 因为Peak Detection VI的输出中已包含有相应点的幅值、二阶导数及位置索引信息,在确定R峰点后,可进一步根据ECG的特点确定出其它各特征点。完整的ECG特征点判别方法及步骤为: (1)幅值最大或二阶导数最小(或两者同时满足)的波峰点判定为R峰点;
(2)R峰点之前的第一个小于零的波谷点(Valley)为Q点;
(3)R峰点之后第一个小于零的波谷点(Valley)为S点;
(4)Q点之前合理时限内的最大波峰点为P点;
(5)S点之后合理时限内的最大波峰点为T点。
(U波幅度较小且目前对其认识还不清楚,本文不作讨论。)4、基于虚拟仪器LabVIEW8.2的编程实现 按图2流程编制LabVIEW8.2程序,考虑到实际ECG波形中存在干扰,阈值(Threshold)不宜取零。程序中采用本周期段数据中最小波谷点的0.02倍作为Valley点阈值,最大波峰点的0.03倍作为Peak点的阈值,这样可将基线附近的绝大多数高频干扰点避开,这些干扰点将不会出现在输出序列中
特征提取
一、low-level,主要是MFCC,以及基于MFCC并对其优化的一些方法。 1、MFCC
2、抗噪声较优的方法:
WMVDR:warped minimum variance distortionless response
Multitaper MFCC:思想是用multiple windows(tapers)来代替汉明窗。
MHEC:mean Hilbert envelope coefficients.此方法对抗汽车噪声很有用。 3、对抗回声较优的方法(reverberant robustness):
FDLP: frequency domain linear prediction
4、融合MFCC的方法(fusion with MFCC):
SCF/SCM: spectral centroid frequency/magnitude
该方法的提出,是考虑到MFCC子带中无法体现能量分布,而FM(frequency modulation)计算量太大。
FFV: fundamental frequency variation,该方法同时考虑到了MFCC和韵律(prosodic)
信息.
HSCC: Harmonic structure cepstral coefficient,该方法体现了能量分布,实现用到了
LDA。
二、high-level,主要是基于phone ,syllable ,word 一级。 1、韵律特征(prosodic features)
目前研究的有 pitch distribution和non-uniform extraction region features(NERFs) 2、音素特征(phonetic features)
建模可以用N-gram,也可以用SVM建模。 3、语法特征(lexical features)
词一级的N-gram,建模的方法有LLR(log likelihood ration)和SVM.SVM的效果应该更好一些。 4、cepstral-derived features
实现用最大似然线性回归MLLR(maximum likelihood linear regression)
一些特征: MFCC
PLP 感知线性预测 LPC 线性预测系数 过零率 LSP 短时能量 子带流量比 亮度 基频
频谱峰值点 SDC CEP 线谱对 频谱能量
Delt(MFCC)
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.801秒