经典的系统辨识方法的发展已经比较成熟和完善,他包括阶跃响应法、脉冲响应法、频率响应法、相关分析法、谱分析法、最小二乘法和极大似然法等。其中最小二乘法(LS)是一种经典的和最基本的,也是应用最广泛的方法。但是,最小二乘估计是非一致的,是有偏差的,所以为了克服他的缺陷,而形成了一些以最小二乘法为基础的系统辨识方法:广义最小二乘法(GI S)、辅助变量法(IV)、增广最小二乘法(EI,S)和广义最小二乘法(GI S),以及将一般的最小二乘法与其他方法相结合的方法,有最小二乘两步法(COR—I S)和随机逼近算法等。
经典的系统辨识方法还存在着一定的不足: (1)利用最小二乘法的系统辨识法一般要求输入信号已知,并且必须具有较丰富的变化,然而,这一点在某些动态系统中,系统的输入常常无法保证;(2)极大似然法计算耗费大,可能得到的是损失函数的局部极小值;(3)经典的辨识方法对于某些复杂系统在一些情况下无能为力。 随着系统的复杂化和对模型精确度要求的提高,系统辨识方法在不断发展,特别是非线性系统辨识方法。主要有:
1、集员系统辨识法
在1979年集员辨识首先出现于Fogel 撰写的文献中,1982年Fogel和Huang又对其做了进一步的改进。集员辨识是假设在噪声或噪声功率未知但有界UBB(Unknown But Bounded)的情况下,利用数据提供的信息给参数或传递函数确定一个总是包含真参数或传递函数的成员集(例如椭球体、多面体、平行六边体等)。不同的实际应用对象,集员成员集的定义也不同。集员辨识理论已广泛应用到多传感器信息融合处理、软测量技术、通讯、信号处理、鲁棒控制及故障检测等方面。
2、多层递阶系统辨识法
多层递阶方法的主要思想为:以时变参数模型的辨识方法作为基础,在输入输出等价的意义下,把一大类非
线性模型化为多层线性模型,为非线性系统的建模给出了一个十分有效的途径。
3、神经网络系统辨识法
由于人工神经网络具有良好的非线性映射能力、自学习适应能力和并行信息处理能力,为解决未知不确定非线性系统的辨识问题提供了一条新的思路。
与传统的基于算法的辨识方法相比较,人工神经网络用于系统辨识具有以下优点:(1)不要求建立实际系统的辨识格式,可以省去对系统建模这一步骤;(2)可以对本质非线性系统进行辨识;(3)辨识的收敛速度仅与神经网络的本身及所采用的学习算法有关;(4)通过调节神经元之间的连接权即可使网络的输出来逼近系统的输出;(5)神经网络也是系统的一个物理实现,可以用在在线控制。
4、模糊逻辑系统辨识法
模糊逻辑理论用模糊集合理论,从系统输入和输出的量测值来辨识系统的模糊模型,也是系统辨识的一个新的
和有效的方法,在非线性系统辨识领域中有十分广泛的应用。模糊逻辑辨识具有独特的优越性:能够有效地辨识复杂和病态结构的系统;能够有效地辨识具有大时延、时变、多输入单输出的非线性复杂系统;可以辨识性能优越的人类控制器;可以得到被控对象的定性与定量相结合的模型。模糊逻辑建模方法的主要内容可分为两个层次:一是模型结构的辨识,另一个是模型参数的估计。典型的模糊结构辨识方法有:模糊网格法、自适应模糊网格法、模糊聚类法及模糊搜索树法等。
5、小波网络系统辨识法
小波网络是在小波分解的基础上提出的一种前馈神经网络口 ,使用小波网络进行动态系统辨识,成为神经网络辨识的一种新的方法。小波分析在理论上保证了小波网络在非线性函数逼近中所具有的快速性、准确性和全局收敛性等优点。小波理论在系统辨识中,尤其在非线性系统辨识中的应用潜力越来越大,为不确定的复杂的非线性系统辨识提供了一种新的有效途径,其具有良好的应用前景。
先验知识指关于系统运动规律、数据以及其他方面的已有知识。这些知识对选择模型结构、设计实验和决定辨识方法等都有重要作用。用于不同目的的模型可能会有很大差别。
先验知识是指关于系统运动规律、数据以及其他方面的已有知识。这些知识对选择模型的结构、设计实验和决定辨识方法等都具有重要的作用。例如可以从基本的物理定律(牛顿定律,基尔霍夫定律,物质守恒定律等)去确定模型结构,建立所研究的变量之间的关系。如果关于这方面的知识是完备的,模型的结构和参数(至少在原则上)便是可以确定的。在空间技术的应用中建立飞行器的动力学模型就是一个例子。但在多数情形下却很难做到这一点。这时先验知识虽然不能完全确定模型,但是在模型结构(也就是辨识中的模型类)的选择上仍然是一个重要因素。此外,对参数变化范围的确定、初值的选取,对数据的必要的限制,以及对模型的适用性进行检验等方面,先验知识也都是最重要的依据。
其次,建模的目的对于确定模型的结构和辨识方法也有重要意义。用于不同目的的模型可能会有很大的差别。在估计具有特定物理意义的参数时,主要考虑模型的参数值与真实的参数值是否一致。在建立预测模型时,只需要考虑预测误差。在建立仿真模型时,就要根据应用的要求去决定仿真的深度,也就是决定模型结构的复杂程度。而对于设计控制系统的模型,则出于不同的控制目的可选择不同的模型类。 辨识是从实验数据中提取有关系统信息的过程,设计实验的目标之一是要使所得到的数据能包含系统更多的信息。主要包括输入信号设计,采样区间设计,预采样滤波器设计等。
辨识的基础是输入和输出数据,而数据来源于对系统的实验和观测,因此辨识归根到底是从数据中提取有关系统的信息的过程,其结果是和实验直接联系在一起的。设计实验的目标之一是要使所得到的数据能包含系统的更多的信息。为此,首先要确定用什么准则来比较数据的好坏。这种准则可以是从辨识的可行性出发的,也可以是从某种最优性原则出发的。实验设计要解决的问题主要是:输入信号的设计,采样区间的设计,预采样滤波器的设计等(见系统辨识实验设计)。 造成模型不适用主要有三方面原因:模型结构选择不当;实验数据误差过大或数据代表性太差;辨识算法存在问题。检验方法主要有利用先验知识检验和利用数据检验两类。
凡是需要通过实验数据确定数学模型和估计参数的场合都要利用辨识技术,辨识技术已经推广到工程和非工程的许多领域,如化学化工过程、核反应堆、电力系统、航空航天飞行器、生物医学系统、社会经济系统、环境系统、生态系统等。适应控制系统则是辨识与控制相结合的一个范例,也是辨识在控制系统中的应用。
优化方式如下:
1 定期的,对电脑内的灰尘进行清理,关机后打开机箱,用吹风机,冷风吹。
2 平时要常用 360 卫士 、金山卫士等工具清理系统垃圾和上网产生的临时文件(ie 缓存),查杀恶意软件。
3 电脑配置差,尽量把虚拟内存设置大点,(xp)右击我的电脑 属性 高级 性能,设置 高级 更改
在自定义那里 设置为 2000 - 4000。
(win7) 计算机-属性-高级系统设置-性能设置-“高级”选项卡-虚拟内存-更改-选择要设置的驱动器c盘,选择系统管理大小或者根据需要选择自定义大小-设置-确定。
4 杀毒软件装种占资源小的,如 nod32,或只装一个辅助杀毒软件。
5 尽量设置ip 为静态ip ,可以减少电脑开机启动时间和进入桌面后的反映时间。
6 电脑桌面不要放太多文件和图标,会使电脑反应变慢的,软件尽量不要安装在c盘。
7 关闭一些启动程序。开始-运行-输入msconfig—确定-在“系统配置实用程序”窗口中点选“启动”-启动 ,除输入法(Ctfmon)、杀毒软件外,一般的程序都可以关掉。也可以用360等软件,智能优化开机加速。
8 建议只装一个主杀毒软件,装多个会占电脑资源,会使电脑更慢。
9 定期的对整理磁盘碎片进行整理,打开我的电脑 要整理磁盘碎片的驱动器—属性—工具--选择整理的磁盘打开“磁盘碎片整理程序”窗口—分析—碎片整理—系统即开始整理。
10 安装个优化大师或超级兔子等 电脑优化软件,优化下,电脑也会快很多。
11 现在的系统,占内存也比较大,有必要的话,加多条内存,也会快很多。
12 电脑硬盘用久了,也会使电脑变慢,重新分区安装可以修复逻辑坏,电脑也会快点,硬盘物理读写速度慢,也只能是换个好点的。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.612秒