4w1h: when what why where,how,其实就是人事时地物,分析任何问题都可以从这五个方面下手,找出问题的根据。
PDCA循环的概念最早是由美国质量管理专家戴明提出来的,所以又称为“戴明环”。PDCA四个英文字母及其在PDCA循环中所代表的含义如下:
1、P(Plan)--计划,确定方针和目标,确定活动计划;
2、D(Do)--执行,实地去做,实现计划中的内容;
3、C(Check)--检查,总结执行计划的结果,注意效果,找出问题;
4、A(Action)--行动,对总结检查的结果进行处理,成功的经验加以肯定并适当推广、标准化;失败的教训加以总结,以免重现,未解决的问题放到下一个PDCA循环。
其应用远远超过品质控制范畴,无论我们做事情,生活,工作,为人处事,处理好这几者的关系都能够很好的帮助我们提高办事效率,这也正迎合了中国的古话,“凡事预则立,不预则废”。任何事情只有好的计划,好的执行,好的总结确认,才能够得到好的发展提高。
之前看到一本书里也是类似的案例
书中介绍的解决方案是用系统思维中分析和解决问题的五大步骤:界定问题、构建框架、明晰关键、高效执行、检查调整。第一步:首先得对问题进行界定:我们要区分问题的初步解决方案与问题本身。但如何发现问题本质呢?这里有一个比较经典的5whys分析方法。 第二步:构建框架:自上而下运用框架,需要平时积累框架。还有自下而上提炼框架,这是一个先发散再收敛的思考过程。第三步:明晰解决问题的关键:列好框架后,分析找出最关键点,合理分配利用时间和精力。第四步:立即行动,解决问题,优化方案,直至问题解决。 如果有爱学习的小伙伴,想系统掌握这些方法,可以看下书和视频:《金字塔原理》、《思维力:高效的系统思维》,腾讯课堂视频课程:《五步,成为问题解决高手》
要提高学生解决问题的能力,关键是要加强对学生进行解决问题策略的指导。
解决问题的策略是在解决问题的过程中逐步形成和积累的,同时需要学生自己不断进行内化。根据问题的难易程度,解决问题的策略可以分为一般策略和特殊策略两类。
一、一般策略 有些问题的数量关系比较简单,学生只需依据生活经验或通过分析、综合等抽象思维过程就可以直接解决问题。 1.生活化。
生活化是指在解决数学问题时通过建立与学生生活经验的联系从而解决问题的策略,常运用于学习新知时,关键要在问题解决后向学生点明解决问题过程中所蕴涵的数学知识和方法。如学习《最大公因数》,先出示问题:老师最近买了一个车库,长40分米、宽32分米,想在车库的地面上铺正方形地砖。
如果要使地砖的边长是整分米数,在铺地砖时又不用切割,地砖有几种选择?如果要使买的块数最少,应该买哪一种?因为学生对此类问题比较熟悉,所以普遍认为:地砖的边长应该是40和32公有的因数,公有因数最大时买的块数最少,解决这两个问题应先找出40和32的因数。然后让学生梳理解决问题的过程,并点明什么是公因数、什么是最大公因数、如何找公因数和最大公因数。
2.数学化。数学化是指在解决实际。
要提高学生解决问题的能力,关键是要加强对学生进行解决问题策略的指导。解决问题的策略是在解决问题的过程中逐步形成和积累的,同时需要学生自己不断进行内化。
根据问题的难易程度,解决问题的策略可以分为一般策略和特殊策略两类。 一、一般策略 有些问题的数量关系比较简单,学生只需依据生活经验或通过分析、综合等抽象思维过程就可以直接解决问题。
1.生活化。生活化是指在解决数学问题时通过建立与学生生活经验的联系从而解决问题的策略,常运用于学习新知时,关键要在问题解决后向学生点明解决问题过程中所蕴涵的数学知识和方法。
如学习《最大公因数》,先出示问题:老师最近买了一个车库,长40分米、宽32分米,想在车库的地面上铺正方形地砖。如果要使地砖的边长是整分米数,在铺地砖时又不用切割,地砖有几种选择?如果要使买的块数最少,应该买哪一种?因为学生对此类问题比较熟悉,所以普遍认为:地砖的边长应该是40和32公有的因数,公有因数最大时买的块数最少,解决这两个问题应先找出40和32的因数。
然后让学生梳理解决问题的过程,并点明什么是公因数、什么是最大公因数、如何找公因数和最大公因数。 2.数学化。
数学化是指在解决实际问题时通过建立与学生已有知识的联系从而解决问题的策略,常运用于实际解决问题时,关键是在解决问题之前要让学生明确运用什么知识和方法来解决问题。如学习《长方形周长》,当学生已经知道长方形周长=(长+宽)*2后出示:小明沿着一个长方形游泳池走了一圈,他一共走了多少米?首先让学生明确“求一共走了多少米就是求长方形周长”,再思考“长方形周长怎么求”、“求长方形周长应知道什么”,最后出示信息“长50米、宽20米”,学生就能自主解决问题。
3.纯数学。纯数学是指在解决数学问题时通过分析、利用数量之间的关系从而解决问题的策略,常运用于学习与旧知有密切联系的新知时,关键要在需解决的数学问题和已有的数学知识之间建立起桥梁。
如学习《稍复杂的分数乘法应用题》,先出示旧问题:水泥厂二月份生产水泥8400吨,三月份比二月份增加25%,三月份生产水泥几吨?学生认为:因为增加几吨=二月份几吨*25%,所以三月份几吨=二月份几吨*(1+25%)=8400*(1+25%)。再出示新问题:水泥厂二月份生产水泥8400吨,三月份比二月份减少25%,三月份生产水泥几吨?让学生说说两类问题有什么异同,因为这两类问题有着本质的联系,所以教师只需在两者之间建立起联系的桥梁,学生就能用迁移的方法自主解决新问题,他们认为:因为减少几吨=二月份几吨*25%,所以三月份几吨=二月份几吨*(1-25%)=8400*(1-25%)。
二、特殊策略 有些问题的数量关系较复杂,常需要一些特殊的解题策略来突破难点,从而找到解题的关键并顺利解决问题。小学生常用的也易接受的特殊策略主要有以下七种: 1.列表的策略。
这种策略适用于解决“信息资料复杂难明、信息之间关系模糊”的问题,它是“把信息中的资料用表列出来,观察和理顺问题的条件、发现解题方法”的一种策略。如在学习人教版第7册《烙饼中的数学问题》时,为了研究烙饼个数与烙饼时间的关系就可采用列表策略,如右图。
运用此策略时要注意:(1)带领学生经历填表过程;(2)引导学生理解数量之间的关系;(3)启发学生利用表格理出解题思路,说一说自己的发现,感受函数关系。 2.画图的策略。
这种策略适用于解决“较抽象而又可以图像化”的问题,它是“用简单的图直观地显示题意、有条理地表示数量关系,从中发现解题方法、确定解题方法”的一种策略。如在学习人教版第5册《搭配问题》时,为了能更直观、有条理地解决问题就可采用画图策略,如右图。
运用此策略时要注意:(1)让学生在画图的活动中体会方法,学会方法;(2)画图前要理请数量关系;(3)画图要与数。
教师应根据教学的实际,让学生把所学知识和周围的生活环境相联系,帮助他们在形成知识、技能的同时,感受数学应用范围的广泛。 2.收集应用事例,加深学生对数学应用的理解与体会 随着科学技术的飞速发展,数学的发展涉及的领域越来越广泛。数字化的家电系列,宇航工程、临床医学、市场的调查与预测、气象学……无处不体现数学的广泛应用。让学生搜集这些信息,既可以帮助学生了解数学的发展,体会数学的价值,激发学生学好数学的勇气与信心,更可以帮助学生领悟数学知识的应用过程。例如:在统计的初步认识教学中,学生搜集了自家几个月用水的情况,通过收集、描述、分析数据(人口的多少、老人和孩子等诸多因素)的过程,得出了自家用水是否合理的判断,并做出今后用水情况的决策。既渗透了环保教育,又使学生感受到数学知识的应用。 3.引导学生从日常生活中寻找数学问题: 罗杰斯认为:“倘若要使学生全身心地投入学习活动,那就必须让学生面对他们个人有意义的或有关的问题。但我们的教育正在力图把学生与生活所有的现实隔绝开来,这种隔绝对意义学习构成一种障碍。然而我们希望让学生成为一个自由的和负责的个体的话,就得让他们直接面对各种现实问题。” 日常生活中有大量的数学问题,结合数学内容选择一些简单的问题加以分析、解决,这对从小培养学生的数学应用意识和数学观念尤为重要,同时也促进学生进一步理解所学的内容。 如在三年级学生认识长方形的周长之后,我是这样做的:让三四个学生为一组,量一量教室内门框、窗框、镜框等长方形的长与宽,
并设计一下做这些物品需多少材料。最好再给每种不同的材料标上单价,让他们计算一下,选择怎样的材料,用什么方案,可以既经济实惠,又满足需要。 4.指导学生从数学内部寻找数学问题: 数学内部充满着各种问题,虽然通过前人的多年努力,已经解决了很多问题,但是学生学习作为再次创造的过程,仍有一个不断探究、解决新问题的过程。在数学内部,学生接触最多的问题是解答习题,而解答习题是解决问题的一种特殊形式。教师可以从问题的角度出发,指导学生对问题正确加以理解,明确已知的条件和要达到的目标,作出合理的假设,寻求通向目标的可能途径,确定最优的解决方案。要使学生从中养成习惯,形成技能,并迁移到其他方面,使他们拥有问题解决的意识,提高思维水平。 例如:计算12345+23456.这是一道多位数的加法,学生计算后,教师可以改变题目的形式,出题“CROSS+ROADS=DANGER,已知O=2,S=3,求其他字母各代表几(不同的字母代表不同的数字)”。这显然为学生创设了一个问题解决的情景。因为解答用字母来表示两个加数的加法,对他们来说是一个没有遇到过的问题,而且解此题时学生不仅要具有加法知识,还须具备假设和推理能力。 5.引导学生联系生活实际解决数学问题: 小学生经过课堂学习能够解决一些简单的实际问题,但是这些实际问题已经经过数学处理,各种条件与问题都比较明显,然而实际生活中的问题并非如此容易,因此要多联系生活实际,从学生遇到的疑惑、矛盾入手,引出新知识的实际问题或情境。
在实际工作中,通常采用的技术分析方法有对比分析法,因素分析法和相关分析法等三种. 1、对比分析法 对比分析法是根据实际成本指标与不同时期的指标进行对比,来揭示差异,分析差异产生原因的一种方法.在对比分析中,可采取实际指标与计划指标对比,本期实际与上期(或上年同期,历史最好水平)实际指标对比,本期实际指标与国内外同类型企业的先进指标对比等形式.通过对比分析,可一般地了解企业成本的升降情况及其发展趋势,查明原因,找出差距,提出进一步改进的措施.在采用对比分析时,应注意本期实际指标与对比指标的可比性,以使比较的结果更能说明问题,揭示的差异才能符合实际.若不可比,则可能使分析的结果不准确,甚至可能得出与实际情况完全不同的相反的结论.在采用对比分析法时,可采取绝对数对比,增减差额对比或相对数对比等多种形式. 比较分析法按比较内容(比什么)分为: (1)比较会计要素的总量 (2)比较结构百分比 (3)比较财务比率 2、因素分析法 因素分析法是将某一综合性指标分解为各个相互关联的因素,通过测定这些因素对综合性指标差异额的影响程度的一种分析方法.在成本分析中采用因素分析法,就是将构成成本的各种因素进行分解,测定各个因素变动对成本计划完成情况的影响程度,并据此对企业的成本计划执行情况进行评价,并提出进一步的改进措施. 采用因素分析法的程序如下: (1)将要分析的某项经济指标分解为若干个因素的乘积.在分解时应注意经济指标的组成因素应能够反映形成该项指标差异的内在构成原因,否则,计算的结果就不准确.如材料费用指标可分解为产品产量,单位消耗量与单价的乘积.但它不能分解为生产该产品的天数,每天用料量与产品产量的乘积.因为这种构成方式不能全面反映产品材料费用的构成情况. (2)计算经济指标的实际数与基期数(如计划数,上期数等),从而形成了两个指标体系.这两个指标的差额,即实际指标减基期指标的差额,就是所要分析的对象.各因素变动对所要分析的经济指标完成情况影响合计数,应与该分析对象相等. (3)确定各因素的替代顺序.在确定经济指标因素的组成时,其先后顺序就是分析时的替代顺序.在确定替代顺序时,应从各个因素相互依存的关系出发,使分析的结果有助于分清经济责任.替代的顺序一般是先替代数量指标,后替代质量指标;先替代实物量指标,后替代货币量指标;先替代主要指标,后替代次要指标. (4)计算替代指标.其方法是以基期数为基础,用实际指标体系中的各个因素,逐步顺序地替换.每次用实际数替换基数指标中的一个因素,就可以计算出一个指标.每次替换后,实际数保留下来,有几个因素就替换几次,就可以得出几个指标.在替换时要注意替换顺序,应采取连环的方式,不能间断,否则,计算出来的各因素的影响程度之和,就不能与经济指标实际数与基期数的差异额(即分析对象)相等. (5)计算各因素变动对经济指标的影响程度.其方法是将每次替代所得到的结果与这一因素替代前的结果进行比较,其差额就是这一因素变动对经济指标的影响程度. (6)将各因素变动对经济指标影响程度的数额相加,应与该项经济指标实际数与基期数的差额(即分析对象)相等. 上述因素分析法的计算过程可用以下公式表示: 设某项经济指标N是由A,B,C三个因素组成的.在分析时,若是用实际指标与计划指标进行对比,则计划指标与实际指标的计算公式如下: 计划指标N0=A0*B0*C0 实际指标N1=A1*B1*C1 分析对象为N1-N0的差额. 采用因素分析法测定各因素变动对指标N的影响程度时,各项计划指标,实际指标及替代指标的计算公式如下: 计划指标 N0=A0*B0*C0-----------(1) 第一次替代N2=A1*B0*C0-----------(2) 第二次替代N3=A1*B1*C0-----------(3) 实际指标 N1=A1*B1*C1-----------(4) 各因素变动对指标N的影响数额按下式计算: 由于A因素变动的影响=(2)-(1)=N2-N0 由于B因素变动的影响=(3)-(2)=N3-N2 由于C因素变动的影响=(4)-(3)=N1-N3 将上述三个项目相加,即为各因素变动对指标N的影响程度,它与分析对象应相等. 根据因素分析法的替代原则,材料费用三个因素的替代顺序为产量,单耗,单价.各因素变动对甲产品材料费用实际比计划降低8 000的测定结果如下: 计划材料费用=250*48*9=108 000(元)-----(1) 第一次替代=200*48*9=86 400(元)------(2) 第二次替代=200*50*9=90 000(元)------(3) 实际材料费用=200*50*10=100 000(元)------(4) 各因素变动对材料费用降低8 000元的影响程度如下: 由于产量变动对材料费用的影响=(2)-(1)=86400-108000=-21600(元) 由于材料单耗变动对材料费的影响=(3)-(2)=90000-86400=3600(元) 由于材料单价变动对材料费用的影响=(4)-(3)=100000-90000=10000(元) 三个因素变动对材料费用的影响程度=-21600+3600+10000=-8000(元) 上述分析计算时,还可以采用另外一种简化的形式,即差额计算法.差额计算法是利用各个因素的实际数与基期数的差额,直接计算各个因素变动对经济指标的影响程度.以上述。
影响问题解决的主要因素包括:
(1)问题的特征。个体解决有关问题时,常常受到问题的类型、呈现的方式等因素的影响。
(2)已有的知识经验。已有经验的质与量都影响着问题解决,与问题解决有关的经验越多,解决该问题的可能性也就越大。
(3)定势与功能固着。定势影响问题解决。功能固着也可以看做是一种定势,即从物体正常功能的角度来考虑问题的定势。当在某种情形下需要利用物体的某一潜在功能来解决问题时,功能固着可能起到阻碍的作用。
(4)原型启发与联想。原型启发是指从其他事物中看出了解决问题的途径和方法。原型是指对解决问题其启发作用的事物。
(5)情感与动机状态。一般来讲,积极的情绪有利于问题的解决,而消极的情绪会干扰问题的解决。动机是促使人解决问题的动力。没有解决问题的动机,不可能解决问题的行为,问题当然不可能解决。
(6)个性因素。个性因素对解决问题也有重要影响。实验表明:一个人是否善于解决问题,与他的灵活性、首创性和自信心等个性心理品质相联系。此外,个体的智力水平、认知风格和世界观等也影响着问题解决的方向和结果。
拓展资料:
一、问题的概念:
问题就是给定信息和要达到的目标之间有某些障碍需要被克服的刺激情境。
问题解决是指为了从问题的初始状态到达目标状态,而采取一系列具有目标指向性的认知操作的过程。
问题解决的过程包括发现问题、理解问题、提出假设、检验假设。
二、解决问题的四个阶段:
发现问题
我们生活的世界处处时时都存在着各种各样的矛盾,当某些矛盾反映到意识中时,个体才发现它是个问题,并要求设法解决它。这就是发现问题的阶段。从问题解决的阶段性看,这是第一阶段,是解决问题的前提。发现问题不论对学习、生活、创造发明都十分重要,是思维积极主动性的表现,在促进心理发展上具有重要意义。
分析问题
要解决所发现的问题,必须明确问题的性质,也就是弄清有哪些矛盾、哪些矛盾方面,它们之间有什么关系,以确定所要解决的问题要达到什么结果,所必须具备的条件、其间的关系和已具有哪些条件,从而找出重要矛盾、关键矛盾之所在。
提出假设
在分析问题的基础上,提出解决该问题的假设,即可采用的解决方案,其中包括采取什么原则和具体的途径、方法。但所有这些往往不是简单现成的,而且有多种多样的可能。但提出假设是问题解决的关键阶段,正确的假设引导问题顺利得到解决,不正确不恰当的假设则使问题的解决走弯路或导向岐途。
检验假设
假设只是提出一种可能的解决方案,还不能保证问题必定能获得解决,所以问题解决的最后一步是对假设进行检验。通常有两种检验方法:一是通过实践检验,即按假定方案实施,如果成功就证明假设正确,同时问题也得到解决;
二是通过心智活动进行推理,即在思维中按假设进行推论,如果能合乎逻辑地论证预期成果,就算问题初步解决。特别是在假设方案一时还不能立即实施时,必须采用后一种检验。但必须指出,即使后一种检验证明假设正确,问题的真正解决仍有待实践结果才能证实。不论哪种检验如果未能获得预期结果,必须重新另提假设再行检验,直至获得正确结果,问题才算解决。
参考资料:百度百科问题解决
解决问题的九大步骤是:
第一步骤:发掘问题;第二步骤:选定题目;第三步骤:追查原因;第四步骤:分析资料;第五步骤:提出办法;第六步骤:选择对策;第七步骤:草拟行动;第八步骤:成果比较;第九步骤:标准化 。
四个阶段
发现问题
我们生活的世界处处时时都存在着各种各样的矛盾,当某些矛盾反映到意识中时,个体才发现它是个问题,并要求设法解决它。这就是发现问题的阶段。从问题解决的阶段性看,这是第一阶段,是解决问题的前提。发现问题不论对学习、生活、创造发明都十分重要,是思维积极主动性的表现,在促进心理发展上具有重要意义。
分析问题
要解决所发现的问题,必须明确问题的性质,也就是弄清有哪些矛盾、哪些矛盾方面,它们之间有什么关系,以确定所要解决的问题要达到什么结果,所必须具备的条件、其间的关系和已具有哪些条件,从而找出重要矛盾、关键矛盾之所在。
提出假设
在分析问题的基础上,提出解决该问题的假设,即可采用的解决方案,其中包括采取什么原则和具体的途径、方法。但所有这些往往不是简单现成的,而且有多种多样的可能。但提出假设是问题解决的关键阶段,正确的假设引导问题顺利得到解决,不正确不恰当的假设则使问题的解决走弯路或导向岐途。
检验假设
假设只是提出一种可能的解决方案,还不能保证问题必定能获得解决,所以问题解决的最后一步是对假设进行检验。通常有两种检验方法:一是通过实践检验,即按假定方案实施,如果成功就证明假设正确,同时问题也得到解决;二是通过心智活动进行推理,即在思维中按假设进行推论,如果能合乎逻辑地论证预期成果,就算问题初步解决。特别是在假设方案一时还不能立即实施时,必须采用后一种检验。但必须指出,即使后一种检验证明假设正确,问题的真正解决仍有待实践结果才能证实。不论哪种检验如果未能获得预期结果,必须重新另提假设再行检验,直至获得正确结果,问题才算解决。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:5.430秒