在JavaScript中定义对象可以采用以下几种方式: 1.基于已有对象扩充其属性和方法 2.工厂方式 3.构造函数方式 4.原型(“prototype”)方式 5.动态原型方式-- 1.基于已有对象扩充其属性和方法object.name = "zhangsan";object.sayName = function(name){ this.name = name; alert(this.name);}object.sayName("lisi");-- 2.工厂方式 function createObject() { var object = new Object(); object.username = "zhangsan"; object.password = "123"; object.get = function() { alert(this.username + ", " + this.password); } return object;}var object1 = createObject();var object2 = createObject();object1.get(); -- 采用带参数的构造方法:function createObject(username, password){ var object = new Object(); object.username = username; object.password = password; object.get = function() { alert(this.username + ", " + this.password); } return object;}var object1 = createObject("zhangsan", "123");object1.get();。
1、列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。列表法也有它的局限性:在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。
2、解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问提中的函数关系,不能用解析式表示。
3、图象法:形象直观,但只能近似地表达两个变量之间的函数关系。把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。
拓展资料:
函数的定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。我们把这个关系式就叫函数关系式,简称函数。
函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
参考资料:搜狗百科词条 函数
什么叫给概念下定义,就是用已知的概念来认识未知的概念,使未知的概念转化为已知的概念,叫做给概念下定义.概念的定义都是由已下定义的概念(已知概念)与被下定义的概念(未知概念)这两部分组成的.例如,有理数与无理数(下定义的概念),统称为实数(被下定义的概念);平行四边形(被下定义的概念)是两组对边分别平行的四边形(下定义的概念).其定义方法有下列几种. 1、直觉定义法 直觉定义亦称原始定义,凭直觉产生的原始概念,这些概念不能用其它概念来解释,原始概念的意义只能借助于其它术语和它们各自的特征给予形象的描述.如几何中的点、直线、平面、集合的元素、对应等.原始概念是人们在长期的实践活动中,对一类事物概括、抽象的结果,是原创性抽象思维活动的产物.直觉定义为数不多. 2、“种+类差”定义法 种+类差”定义法:被定义的概念=最邻近的种概念(种)+类差。
这是下定义常用的内涵法。“最邻近的种概念”,就是被定义概念的最邻近的种概念,“类差”就是被定义概念在它的最邻近的种概念里区别于其它类概念的那些本质属性。
例如,以“平行四边形”为最邻近的种概念的类概念有“矩形”、“菱形”,“菱形”的“邻边相等”是区别于“矩形”的本质属性,“邻边相等”就是“菱形”的类差。我们先看几个用“种+类差”定义的例子: 等腰梯形是两腰相等的梯形. 直角梯形是有一个底角是直角的梯形. 等腰三角形是两边相等或两角相等的三角形. 逻辑上还可以通过总结外延给出定义.例如:“有理数和无理数统称为实数”等. 由上述几例可看出,用“种加类差”的方式给概念下定义,首先要找出被定义概念的最邻近的种概念,然后把被定义概念所反映的对象同种概念中的其它类概念所反映的对象进行比较,找出“类差”,最后把类差加最邻近的种概念组成下定义概念而给出定义。
种加类差定义法在形式逻辑中也称为实质定义,属于演绎型定义,其顺序是从一般到特殊。这种定义,既揭示了概念所反映对象的特殊性,又指出了一般性,是行之有效的定义方法。
由于概念本身的类别特点及类差性质的不同,在叙述形式上也有差异。 这种定义方法,能用已知的种概念的内涵来揭示被定义概念的内涵。
揭示了概念的内涵,既准确又明了,有助于建立概念之间的联系,使知识系统化,因此,在中学数学概念的定义中应用较多. 3、发生式定义法 发生定义法(也称构造性定义法):通过被定义概念所反映对象发生过程,或形成的特征的描述来揭示被定义概念的本质属性的定义方法称发生定义法。这种定义法是“种+类差”定义的一种特殊形式。
定义中的类差是描述被定义概念的发生过程或形成的特征,而不是揭示被定义概念的特有的本质属性。 例如,平面(空间)上与定点等距离的点的轨迹叫做圆(球).此外,中学数学中对圆柱、圆锥、圆台、微分、积分、坐标系等概念也都是采用的发生式定义法. 又如: 平面内与两个定点的距离的和等于定长的点的轨迹叫做椭圆. 围绕一中心点或轴转动,同时又逐渐远离的动点轨迹称为螺线. 一直杆与圆相切作无滑动的滚动,此直杆上一定点的轨迹称为圆的渐开线. 设 是试验E中的一个事件,若将E重复进行n次,其中A发生了 次,则称 为n次试验中事件A发生的频率. 在一定条件下,当试验次数越来越多时,事件A出现的频率逐步稳定于某一固定的常数P,称P为事件A出现的概率. 由此可知,只要有人类的数学活动,就有概念的发生式定义. 4、逆式定义法 这是一种给出概念外延的定义法,又叫归纳定义法.例如,整数和分数统称为有理数;正弦、余弦、正切和余切函数叫做三角函数;椭圆、双曲线和抛物线叫做圆锥曲线;逻辑的和、非、积运算叫做逻辑运算等等,都是这种定义法. 5、约定性定义法 由于实践需要或数学自身发展的需要而被指定的数学概念.在实践活动中, 人们发现一些概念非常重要,便指明这些概念,以便数学活动中使用.比如一些特定的数:圆周率 、自然对数的底e等;某些重要的值:平均数、频数、方差等;某类数学活动的概括:比如代数指研究有限多元素有限次运算的数学活动;几何指研究空间及物体在空间结构中结构与形式的数学活动;随机事件指在社会和自然界中,相同条件下,可能发生也可能不发生,但在大量重复试验中其出现的频率呈现稳定性的事情;概率指随机事件发生的可能性大小的数学度量;等等. 同时,数学概念有时是数学发展所需要约定的.如零次幂的约定 ,模为零的向量规定为零向量,模为1的向量规定为单位向量.又如矢量积的方向由右手法则规定.数学教学中应向学生灌输这样一种观念,即数学概念是可以约定的(其更深刻的含义是数学可以创造).约定是简约思想的结果,它使得数学因为有了这样的约定而运算简便.约定不是惟一的,但应具有合理性或符合客观事物的规律.如规定矢量积的方向按左手法则也不是不可以的.约定不是随意针对的,一般只约定那些有重要作用的概念,如约定 当n趋于无限大时的极限为自然对数的底e,因为这个数对计算十分重要. 6、刻画性定义 刻画性定义法亦称描述性定义法,数学中那些体现。
一.工厂方式:先创建对象,再向对象添加方法和属性,封闭后调用不要使用new操作符创建对象。
使用这种方法有很多弊端,把方法定义在工厂函数内部的时候,每次调用的时候都会产生新的函数function factory(name,person,address,time){ var tmp=new Object; tmp.name=name; tmp.person=person; tmp.address=address; tmp.workTime=function(){ alert("we start to work at" + time); } return tmp;}var factory1=factory("drugs",100,"huashan Rd",10);var factory2=factory("TCMdrugs",100,"hongqiao Rd",11);factory1.workTime();factory2.workTime();//Here,factory1 and factory2 have different method对这种问题虽然可以用下面的方式改进,但是缺乏很好的封装性function factory(name,person,address,time){ var tmp=new Object; tmp.name=name; tmp.person=person; tmp.address=address; tmp.workTime=workTime(); return tmp;}function workTime(){ alert("we start to work at" + this.time);}二,构造函数方式,在构造函数内部不创建对象,使用this关键字,使用时候用new操作符,存在和工厂方式相同的问题,重复创建函数。function counstruct(name,person,address,time){ this.name=name; this.person=person; this.address=address; this.workTime=function(){ alert("we start to work at" + this.time); };}三.原型方式:利用prototype属性来实现属性和方法,可以通过instanceof 检查对象类型,解决了重复创建函数的问题,但不能通过传递参数初始化属性function Car(){}Car.prototype.color = "red";Car.prototype.doors = 4;Car.prototype.mpg = 23;Car.prototype.showColor = function(){ alert(this.color);};var car1 = new Car();var car2 = new Car();但是如果遇到下面的情况,又出问题了Car.prototype.drivers = new Array("mike", "sue");car1.drivers.push("matt");alert(car1.drivers); //outputs "mike,sue,matt"alert(car2.drivers); //outputs "mike,sue,matt"drivers是指向Array对象的指针,Car的两个实例都指向同一个数组。
四.混合的构造函数/原型方式:针对原型方式的解决方案function Car(sColor, iDoors, iMpg){ this.color = sColor; this.doors = iDoors; this.mpg = iMpg; this.drivers = new Array("mike", "sue");}Car.prototype.showColor = function (){ alert(this.color);};var car1 = new Car("red", 4, 23);var car2 = new Car("blue", 3, 25);car1.drivers.push("matt");alert(car1.drivers);alert(car2.drivers);五.动态原型方式:这种方式是极力推荐的方式,避免了前面几种方式所出现的问题,提供了更友好的编码风格function Car(sColor, iDoors, iMpg){ this.color = sColor; this.doors = iDoors; this.mpg = iMpg; this.drivers = new Array("mike", "sue"); if(typeof Car.initialized == "undefined"){ Car.prototype.showColor = function (){ alert(this.color); }; Car.initialized = true; }}var car1 = new Car("red", 4, 23);var car2 = new Car("blue", 3, 25);car1.drivers.push("matt");alert(car1.drivers);alert(car2.drivers);六.混合工厂方式:和工厂方式有些相似,但采用new关键字实例化,具有和工厂方式相同的弊端,不推荐使用。
一、函数的定义 函数的传统定义:设在某变化过程中有两个变量x、y,如果对于x在某一范围内的每一个确定的值,y都有唯一确定的值与它对应,那么就称y是x的函数,x叫做自变量。
我们将自变量x取值的集合叫做函数的定义域,和自变量x对应的y的值叫做函数值,函数值的集合叫做函数的值域。函数的近代定义:设A,B都是非空的数的集合,f:x→y是从A到B的一个对应法则,那么从A到B的映射f:A→B就叫做函数,记作y=f(x),其中x∈A,y∈B,原象集合A叫做函数f(x)的定义域,象集合C叫做函数f(x)的值域,显然有CB。
符号y=f(x)即是“y是x的函数”的数学表示,应理解为:x是自变量,它是法则所施加的对象;f是对应法则,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x为允许的某一具体值时,相应的y值为与该自变量值对应的函数值,当f用解析式表示时,则解析式为函数解析式。y=f(x)仅仅是函数符号,不是表示“y等于f与x的乘积”,f(x)也不一定是解析式,在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等符号来表示。
对函数概念的理解 函数的两个定义本质是一致的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。这样,就不难得知函数实质是从非空数集A到非空数集B的一个特殊的映射。
由函数的近代定义可知,函数概念含有三个要素:定义域A、值域C和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
y=f(x)的意义是:y等于x在法则f下的对应值,而f是“对应”得以实现的方法和途径,是联系x与y的纽带,所以是函数的核心。至于用什么字母表示自变量、因变量和对应法则,这是无关紧要的。
函数的定义域(即原象集合)是自变量x的取值范围,它是构成函数的一个不可缺少的组成部分。当函数的定义域及从定义域到值域的对应法则完全确定之后,函数的值域也就随之确定了。
因此,定义域和对应法则为“y是x的函数”的两个基本条件,缺一不可。只有当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数,这就是说:1)定义域不同,两个函数也就不同;2)对应法则不同,两个函数也是不同的;3)即使是定义域和值域都分别相同的两个函数,它们也不一定是同一函数,因为函数的定义域和值域不能唯一地确定函数的对应法则。
例如:函数y=x+1与y=2x+1,其定义域都是x∈R,值域都为y∈R。也就是说,这两个函数的定义域和值域相同,但它们的对应法则是不同的,因此不能说这两个函数是同一个函数。
定义域A,值域C以及从A到C的对应法则f,称为函数的三要素。由于值域可由定义域和对应法则唯一确定。
两个函数当且仅当定义域与对应法则分别相同时,才是同一函数。例如:在①y=x与 ,② 与 ,③y=x+1与 ,④y=x0与y=1,⑤y=|x|与 这五组函数中,只有⑤表示同一函数。
f(x)与f(a)的区别与联系 f(a)表示当x=a时函数f(x)的值,是一个常量。而f(x)是自变量x的函数,在一般情况下,它是一个变量,f(a)是f(x)的一个特殊值。
如一次函数f(x)=3x+4,当x=8时,f(8)=3*8+4=28是一常数。当法则所施加的对象与解析式中表述的对象不一致时,该解析式不能正确施加法则。
比如f(x)=x2+1,左端是对x施加法则,右端也是关于x的解析式,这时此式是以x为自变量的函数的解析式;而对于f(x+1)=3x2+2x+1,左端表示对x+1施加法则,右端是关于x的解析式,二者并不统一,这时此式既不是关于x的函数解析式,也不是关于x+1的函数解析式。函数的定义域:定义:原象的集合A叫做函数y=f(x)的定义域,即自变量的允许值范围。
当函数用解析式给出时,定义域就是使式子有意义的自变量的允许值的集合。求定义域:求定义域的三种基本方法:一是依据函数解析式中所包含的运算(除法、开平方等)对自变量的制约要求,通过解不等式(组)求得定义域;二是依据确定函数y=f(x)的对应法则f对作用对象的取值范围的制约要求,通过解不等式(组)求得定义域;三是根据问题的实际意义,规定自变量的取值范围,求得定义域。
如果函数是由一些基本函数通过四则运算构成的,那么它的定义域是使各个部分都有意义的x值组成的集合。对含参数的函数求定义域(或已知定义域,求字母参数的取值范围)时,必须对参数的取值进行讨论。
当函数由实际问题给出时,其定义域由实际问题确定。函数的值域: 定义:象的集合C(C B)叫做函数y=f(x)的值域,即函数值的变化范围。
求值域的基本方法:依据各类基本函数的值域,通过不等式的变换,确定函数值的取值范围,在这一过程中,充分利用函数图像的直观性,能有助于结论的得出和检验。从定义域出发,利用函数的单调性,是探求函数值域的通法 这样可以么?。
y是x 的函数,可以记作y =f(x)(f表示对应法则)。
(2)近代定义:设A、B都是非空的数的集合,f是从A到B的一个对应法则,那么A到B的映射f : A→B就叫做A到B的函数,记作y =f(x),其中x ? A ,y?B。原象的集合A叫做函数f(x)的定义域,象的集合C叫做函数f(x)的值域,显然C? B。
注意①由函数的近代定义可知,函数是数集间的映射。
②对应法则f是联系x、y的纽带,是函数的核心,常用一个解析式表示,但在不少问题中,对应法则f也可能不便用或不能用上个解析式来表示,而是采用其他方式(如数表或图象等)。定义域(或原象集合)是自变量的取值范围,它是函数的一个不可缺少的组成部分,它和对应法则是函数的两个重要因素。定义域不同而解析式相同的函数,应看作是两个不同的函数。
③f(a)与f(x)的涵义是不同的,f(a)表示自变量x=a时所得的函数值,它是一个常量,而f(x)是x的函数,是表示对应关系的。
2、函数的性质
(1)函数的单调性
设y =f(x)是给定区间上的一个函数, 是给定区间上的任意两个值,且x1
在C程序设计中,将完成指定功能的C代码定义成函数,变成逻辑上一个相对独立的程序单位。
函数定义需要指明函数返回值的类型、函数名、函数的形式参数(常简称形参)和函数体(包括说明和定义及语句序列)。函数定义的一般形式为 存储类型说明符 数据类型说明符 函数名(形式参数表) 形式参数说明序列 { 说明和定义部分 执行语句序列 } 存储类型说明符或省缺,或为static。
省缺表示一个全局函数,static表示一个静态函数,只供同一源程序文件中的函数使用。 数据类型说明符用来指定函数返回值类型,可以是基本数据类型、某种指针类型、结构类型等。
但不可以是数组类型。特别当函数不返回结果时,可用void明确指明函数不返回值。
数据类型说明符也可省缺,省缺被默认为返回int型值。 函数名是一个标识符。
形式参数表是用远号分隔的若干形式参数,用不同的标识符指明各形式参数的名。形式参数说明序列用来说明各形式参数的数据类型,相同数据类型的形式参数可以一起说明。
现在编写C程序的习惯是形式参数说明序列直接放在形式参数表中,即在形式参数说明表中顺序列出各形式参数的数据类型和形式参数的名称。如是这样,一般形式的第一行全部内容称为函数头,也称为函数模型。
特别情况,函数可能不设形式参数,也就没有形式参数表和形式参数说明序列。但函数名后的一对圆括号是不可以没有的。
一对花括号括住的部分称为函数体,函数体包括类型说明、变量定义和函数的执行语句序列。在函数体内可以有return语句终止函数的执行。
如函数有返回值类型,则return语句中一定要有表达式,作为函数调用的返回值。
声明:本网站尊重并保护知识产权,根据《信息网络传播权保护条例》,如果我们转载的作品侵犯了您的权利,请在一个月内通知我们,我们会及时删除。
蜀ICP备2020033479号-4 Copyright © 2016 学习鸟. 页面生成时间:2.640秒